Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biomedicines ; 11(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37189733

RESUMO

Protozoal infections are a world-wide problem. The toxicity and somewhat low effectiveness of the existing drugs require the search for new ways of protozoa suppression. Snake venom contains structurally diverse components manifesting antiprotozoal activity; for example, those in cobra venom are cytotoxins. In this work, we aimed to characterize a novel antiprotozoal component(s) in the Bungarus multicinctus krait venom using the ciliate Tetrahymena pyriformis as a model organism. To determine the toxicity of the substances under study, surviving ciliates were registered automatically by an original BioLaT-3.2 instrument. The krait venom was separated by three-step liquid chromatography and the toxicity of the obtained fractions against T. pyriformis was analyzed. As a result, 21 kDa protein toxic to Tetrahymena was isolated and its amino acid sequence was determined by MALDI TOF MS and high-resolution mass spectrometry. It was found that antiprotozoal activity was manifested by ß-bungarotoxin (ß-Bgt) differing from the known toxins by two amino acid residues. Inactivation of ß-Bgt phospholipolytic activity with p-bromophenacyl bromide did not change its antiprotozoal activity. Thus, this is the first demonstration of the antiprotozoal activity of ß-Bgt, which is shown to be independent of its phospholipolytic activity.

2.
Sensors (Basel) ; 22(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35459071

RESUMO

Hollow ferromagnetic powders of iron were obtained by means of ultrasonic spray pyrolysis. A variation in the conditions of the synthesis allows for the adjustment of the mean size of the hollow iron particles. Iron powders were obtained by this technique, starting from the aqueous solution of iron nitrate of two different concentrations: 10 and 20 wt.%. This was followed by a reduction in hydrogen. An increase in the concentration of the solution increased the mean particle size from 0.6 to 1.0 microns and widened particle size distribution, but still produced hollow particles. Larger particles appeared problematic for the reduction, although admixture of iron oxides did not decrease the microwave permeability of the material. The paraffin wax-based composites filled with obtained powders demonstrated broadband magnetic loss with a complex structure for lesser particles, and single-peak absorption for particles of 1 micron. Potential applications are 5G technology, electromagnetic compatibility designs, and magnetic field sensing.


Assuntos
Ferro , Micro-Ondas , Tamanho da Partícula , Permeabilidade , Pós
3.
Cell Mol Life Sci ; 78(23): 7777-7794, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714362

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A2s (PLA2s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA2s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA2s showed low cytotoxicity to Vero E6 cells with some activity at micromolar concentrations, but strong antiviral activity at nanomolar concentrations. Dimeric PLA2 from the viper Vipera nikolskii and its subunits manifested especially potent virucidal effects, which were related to their phospholipolytic activity, and inhibited cell-cell fusion mediated by the SARS-CoV-2 spike glycoprotein. Moreover, PLA2s interfered with binding both of an antibody against ACE2 and of the receptor-binding domain of the glycoprotein S to 293T/ACE2 cells. This is the first demonstration of a detrimental effect of PLA2s on ß-coronaviruses. Thus, snake PLA2s are promising for the development of antiviral drugs that target the viral envelope, and could also prove to be useful tools to study the interaction of viruses with host cells.


Assuntos
Fosfolipases A2/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Venenos de Víboras/farmacologia , Ligação Viral/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Antivirais/farmacologia , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Células HEK293 , Humanos , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Células Vero , Venenos de Víboras/enzimologia , Tratamento Farmacológico da COVID-19
4.
Sensors (Basel) ; 21(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300364

RESUMO

Protective SiO2 coating deposited to iron microparticles is highly demanded both for the chemical and magnetic performance of the latter. Hydrolysis of tetraethoxysilane is the crucial method for SiO2 deposition from a solution. The capabilities of this technique have not been thoroughly studied yet. Here, two factors were tested to affect the chemical composition and the thickness of the SiO2 shell. It was found that an increase in the hydrolysis reaction time thickened the SiO2 shell from 100 to 200 nm. Moreover, a decrease in the acidity of the reaction mixture not only thickened the shell but also varied the chemical composition from SiO3.0 to SiO8.6. The thickness and composition of the dielectric layer were studied by scanning electron microscopy and energy-dispersive X-ray analysis. Microwave permeability and permittivity of the SiO2-coated iron particles mixed with a paraffin wax matrix were measured by the coaxial line technique. An increase in thickness of the silica layer decreased the real quasi-static permittivity. The changes observed were shown to agree with the Maxwell Garnett effective medium theory. The new method developed to fine-tune the chemical properties of the protective SiO2 shell may be helpful for new magnetic biosensor designs as it allows for biocompatibility adjustment.


Assuntos
Micro-Ondas , Dióxido de Silício , Ferro , Magnetismo
5.
Mar Drugs ; 19(2)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669933

RESUMO

Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, ß2 and ß4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.


Assuntos
Proteínas Neurotóxicas de Elapídeos/farmacologia , Conotoxinas/farmacologia , Glioma/tratamento farmacológico , Antagonistas Nicotínicos/farmacologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Glioma/patologia , Inibidores de Lipoxigenase/farmacologia , Nicotina/farmacologia , Ratos , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Fatores de Tempo
6.
Toxins (Basel) ; 12(5)2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429047

RESUMO

Snake venoms possess lethal activities against different organisms, ranging from bacteria to higher vertebrates. Several venoms were shown to be active against protozoa, however, data about the anti-protozoan activity of cobra and viper venoms are very scarce. We tested the effects of venoms from several snake species on the ciliate Tetrahymena pyriformis. The venoms tested induced T. pyriformis immobilization, followed by death, the most pronounced effect being observed for cobra Naja sumatrana venom. The active polypeptides were isolated from this venom by a combination of gel-filtration, ion exchange and reversed-phase HPLC and analyzed by mass spectrometry. It was found that these were cytotoxins of the three-finger toxin family. The cytotoxins from several cobra species were tested and manifested toxicity for infusorians. Light microscopy revealed that, because of the cytotoxin action, the infusorians' morphology was changed greatly, from teardrop-like to an almost spherical shape, this alteration being accompanied by a leakage of cell contents. Fluorescence microscopy showed that the fluorescently labelled cytotoxin 2 from cobra N. oxiana was localized mainly at the membrane of killed infusorians, indicating that cytotoxins may kill T. pyriformis by causing membrane rupture. This work is the first evidence of the antiprotozoal activity of cobra venom cytotoxins, as demonstrated by the example of the ciliate T. pyriformis.


Assuntos
Antiprotozoários/farmacologia , Citotoxinas/farmacologia , Venenos Elapídicos/química , Peptídeos/farmacologia , Tetrahymena pyriformis/efeitos dos fármacos , Antiprotozoários/isolamento & purificação , Citotoxinas/isolamento & purificação , Peptídeos/isolamento & purificação
7.
Mar Drugs ; 18(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272633

RESUMO

Several biochemical mechanisms, including the arachidonic acid cascade and activation of nicotinic acetylcholine receptors (nAChRs), are involved in increased tumor survival. Combined application of inhibitors acting on these two pathways may result in a more pronounced antitumor effect. Here, we show that baicalein (selective 12-lipoxygenase inhibitor), nordihydroguaiaretic acid (non-selective lipoxygenase inhibitor), and indomethacin (non-selective cyclooxygenase inhibitor) are cytotoxic to Ehrlich carcinoma cells in vitro. Marine snail α-conotoxins PnIA, RgIA and ArIB11L16D, blockers of α3ß2/α6ß2, α9α10 and α7 nAChR subtypes, respectively, as well as α-cobratoxin, a blocker of α7 and muscle subtype nAChRs, exhibit low cytotoxicity, but enhance the antitumor effect of baicalein 1.4-fold after 24 h and that of nordihydroguaiaretic acid 1.8-3.9-fold after 48 h of cell cultivation. α-Conotoxin MII, a blocker of α6-containing and α3ß2 nAChR subtypes, increases the cytotoxic effect of indomethacin 1.9-fold after 48 h of cultivation. In vivo, baicalein, α-conotoxins MII and PnIA inhibit Ehrlich carcinoma growth and increase mouse survival; these effects are greatly enhanced by the combined application of α-conotoxin MII with indomethacin or conotoxin PnIA with baicalein. Thus, we show, for the first time, antitumor synergism of α-conotoxins and arachidonic acid cascade inhibitors.


Assuntos
Carcinoma de Ehrlich/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Conotoxinas/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Lipoxigenase/farmacologia , Antagonistas Nicotínicos/farmacologia , Animais , Ácido Araquidônico/antagonistas & inibidores , Carcinoma/tratamento farmacológico , Proteínas Neurotóxicas de Elapídeos/farmacologia , Sinergismo Farmacológico , Flavanonas/farmacologia , Indometacina/farmacologia , Masoprocol/farmacologia , Camundongos , Receptores Nicotínicos
8.
Toxins (Basel) ; 9(11)2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29072627

RESUMO

Scorpion venoms are complex polypeptide mixtures, the ion channel blockers and antimicrobial peptides being the best studied components. The coagulopathic properties of scorpion venoms are poorly studied and the data about substances exhibiting these properties are very limited. During research on the Heterometrus laoticus scorpion venom, we have isolated low-molecular compounds with anticoagulant activity. Determination of their structure has shown that one of them is adenosine, and two others are dipeptides LeuTrp and IleTrp. The anticoagulant properties of adenosine, an inhibitor of platelet aggregation, are well known, but its presence in scorpion venom is shown for the first time. The dipeptides did not influence the coagulation time in standard plasma coagulation tests. However, similarly to adenosine, both peptides strongly prolonged the bleeding time from mouse tail and in vitro clot formation in whole blood. The dipeptides inhibited the secondary phase in platelet aggregation induced by ADP, and IleTrp decreased an initial rate of platelet aggregation induced by collagen. This suggests that their anticoagulant effects may be realized through the deterioration of platelet function. The ability of short peptides from venom to slow down blood coagulation and their presence in scorpion venom are established for the first time. Further studies are needed to elucidate the precise molecular mechanism of dipeptide anticoagulant activity.


Assuntos
Adenosina/farmacologia , Anticoagulantes/farmacologia , Peptídeos/farmacologia , Venenos de Escorpião/química , Adenosina/química , Adenosina/isolamento & purificação , Animais , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Masculino , Camundongos , Peso Molecular , Peptídeos/química , Peptídeos/isolamento & purificação , Agregação Plaquetária/efeitos dos fármacos , Escorpiões
9.
Toxins (Basel) ; 9(9)2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878143

RESUMO

We showed recently that nerve growth factor (NGF) from cobra venom inhibited the growth of Ehrlich ascites carcinoma (EAC) inoculated subcutaneously in mice. Here, we studied the influence of anti-complementary cobra venom factor (CVF) and the non-steroidal anti-inflammatory drug ketoprofen on the antitumor NGF effect, as well as on NGF-induced changes in EAC histological patterns, the activity of lactate and succinate dehydrogenases in tumor cells and the serum level of some cytokines. NGF, CVF and ketoprofen reduced the tumor volume by approximately 72%, 68% and 30%, respectively. The antitumor effect of NGF was accompanied by an increase in the lymphocytic infiltration of the tumor tissue, the level of interleukin 1β and tumor necrosis factor α in the serum, as well as the activity of lactate and succinate dehydrogenases in tumor cells. Simultaneous administration of NGF with either CVF or ketoprofen abolished the antitumor effect and reduced all other effects of NGF, whereas NGF itself significantly decreased the antitumor action of both CVF and ketoprofen. Thus, the antitumor effect of NGF critically depended on the status of the immune system and was abolished by the disturbance of the complement system; the disturbance of the inflammatory response canceled the antitumor effect as well.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Ehrlich/tratamento farmacológico , Venenos Elapídicos/química , Cetoprofeno/uso terapêutico , Fator de Crescimento Neural/uso terapêutico , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Ehrlich/sangue , Carcinoma de Ehrlich/patologia , Citocinas/sangue , Venenos Elapídicos/farmacologia , Venenos Elapídicos/uso terapêutico , Feminino , Glicólise/efeitos dos fármacos , Cetoprofeno/farmacologia , L-Lactato Desidrogenase/metabolismo , Camundongos , Fator de Crescimento Neural/farmacologia , Succinato Desidrogenase/metabolismo , Carga Tumoral/efeitos dos fármacos
10.
PLoS One ; 9(12): e115428, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25522251

RESUMO

Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.


Assuntos
Neurônios/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Fosfolipases A2/farmacologia , Venenos de Serpentes/farmacologia , Potenciais de Ação , Sequência de Aminoácidos , Animais , Lymnaea , Dados de Sequência Molecular , Neurônios/fisiologia , Antagonistas Nicotínicos/química , Ligação Proteica , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Venenos de Serpentes/química
11.
Toxins (Basel) ; 6(3): 784-95, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24577582

RESUMO

The effects of nerve growth factor (NGF) from cobra venom (cvNGF) on growth of Ehrlich ascites carcinoma (EAC) cells inoculated subcutaneously in mice have been studied. The carcinoma growth slows down, but does not stop, during a course of cvNGF injections and restores after the course has been discontinued. The maximal anti-tumor effect has been observed at a dose of 8 nmoles cvNGF/kg body weight. cvNGF does not impact on lifespan of mice with grafted EAC cells. K252a, a tyrosine kinase inhibitor, attenuates the anti-tumor effect of cvNGF indicating the involvement of TrkA receptors in the process. cvNGF has induced also increase in body weight of the experimental animals. In overall, cvNGF shows the anti-tumor and weight-increasing effects which are opposite to those described for mammalian NGF (mNGF). However in experiments on breast cancer cell line MCF-7 cvNGF showed the same proliferative effects as mNGF and had no cytotoxic action on tumor cells in vitro. These data suggest that cvNGF slows down EAC growth via an indirect mechanism in which TrkA receptors are involved.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Ehrlich/tratamento farmacológico , Venenos Elapídicos , Fator de Crescimento Neural/uso terapêutico , Animais , Antineoplásicos/farmacologia , Carbazóis/farmacologia , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Alcaloides Indólicos/farmacologia , Células MCF-7 , Camundongos , Fator de Crescimento Neural/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptor trkA/antagonistas & inibidores , Receptor trkA/metabolismo , Carga Tumoral/efeitos dos fármacos
12.
J Biol Chem ; 287(9): 6725-34, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22223648

RESUMO

In Naja kaouthia cobra venom, we have earlier discovered a covalent dimeric form of α-cobratoxin (αCT-αCT) with two intermolecular disulfides, but we could not determine their positions. Here, we report the αCT-αCT crystal structure at 1.94 Å where intermolecular disulfides are identified between Cys(3) in one protomer and Cys(20) of the second, and vice versa. All remaining intramolecular disulfides, including the additional bridge between Cys(26) and Cys(30) in the central loops II, have the same positions as in monomeric α-cobratoxin. The three-finger fold is essentially preserved in each protomer, but the arrangement of the αCT-αCT dimer differs from those of noncovalent crystallographic dimers of three-finger toxins (TFT) or from the κ-bungarotoxin solution structure. Selective reduction of Cys(26)-Cys(30) in one protomer does not affect the activity against the α7 nicotinic acetylcholine receptor (nAChR), whereas its reduction in both protomers almost prevents α7 nAChR recognition. On the contrary, reduction of one or both Cys(26)-Cys(30) disulfides in αCT-αCT considerably potentiates inhibition of the α3ß2 nAChR by the toxin. The heteromeric dimer of α-cobratoxin and cytotoxin has an activity similar to that of αCT-αCT against the α7 nAChR and is more active against α3ß2 nAChRs. Our results demonstrate that at least one Cys(26)-Cys(30) disulfide in covalent TFT dimers, similar to the monomeric TFTs, is essential for their recognition by α7 nAChR, although it is less important for interaction of covalent TFT dimers with the α3ß2 nAChR.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Dissulfetos/química , Receptores Nicotínicos/química , Alquilação , Sítios de Ligação , Proteínas Neurotóxicas de Elapídeos/metabolismo , Cristalografia por Raios X , Dimerização , Dissulfetos/metabolismo , Modelos Químicos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ensaio Radioligante , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
13.
Toxicon ; 57(5): 787-93, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21333664

RESUMO

The venoms of snakes from Viperidae family mainly influence the function of various blood components. However, the published data indicate that these venoms contain also neuroactive components, the most studied being neurotoxic phospholipases A2 (PLA2s). Earlier we have shown (Gorbacheva et al., 2008) that several Viperidae venoms blocked nicotinic acetylcholine receptors (nAChRs) and voltage-gated Ca²+ channels in isolated identified neurons of the fresh-water snail Lymnaea stagnalis. In this paper, we report on isolation from puff adder Bitis arietans venom and characterization of a novel protein bitanarin that reversibly blocks nAChRs. To isolate the protein, the venom of B. arietans was fractionated by gel-filtration, ion-exchange and reversed phase chromatography and fractions obtained were screened for capability to block nAChRs. The isolated protein competed with [¹²5I]iodinated α-bungarotoxin for binding to human α7 and Torpedo californica nAChRs, as well as to acetylcholine-binding protein from L. stagnalis, the IC50 being 20 ± 1.5, 4.3 ± 0.2, and 10.6 ± 0.6 µM, respectively. It also blocked reversibly acetylcholine-elicited current in isolated L. stagnalis neurons with IC50 of 11.4 µM. Mass-spectrometry analysis determined the molecular mass of 27.4 kDa and the presence of 28 cysteine residues forming 14 disulphide bonds. Edman degradation of the protein and tryptic fragments showed its similarity to PLA2s from snake venoms. Indeed, the protein possessed high PLA2 activity, which was 1.95 mmol/min/µmol. Bitanarin is the first described PLA2 that contains 14 disulphide bonds and the first nAChR blocker possessing PLA2 activity.


Assuntos
Antagonistas Nicotínicos/metabolismo , Fosfolipases A2/genética , Fosfolipases A2/isolamento & purificação , Venenos de Víboras/enzimologia , Viperidae , Animais , Fracionamento Químico , Cromatografia em Gel , Cromatografia por Troca Iônica , Humanos , Espectrometria de Massas , Antagonistas Nicotínicos/isolamento & purificação , Receptores Nicotínicos/metabolismo
14.
Toxicon ; 55(2-3): 186-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19622365

RESUMO

Thrombin is a key enzyme in the blood coagulation cascade and is also involved in carcinogenesis; therefore, its inhibitors are of fundamental and clinical importance. Snake venoms are widely used as sources of proteins that affect blood coagulation. We have isolated a new protein, called TI-Nh, from the Naja haje cobra venom. TI-Nh is a mixed-type inhibitor of thrombin (K(i) of 72.8 nM for a synthetic peptide substrate) and effectively inhibits thrombin-induced platelet aggregation with an IC(50) value of 0.2 nM. At concentrations up to approximately 50 nM, at which the thrombin-clotting time is substantially prolonged, TI-Nh exerts no detectable effects on both the intrinsic and extrinsic pathways of the coagulation cascade. It does not hydrolyze either fibrinogen or thrombin. Although TI-Nh bears structural features typical of group IB phospholipases A(2) (PLA(2)s), it possesses relatively weak enzymatic activity and is nontoxic to PC12 cells at concentrations up to 15 microM. Nevertheless, TI-Nh evokes neurite outgrowth in these cells at a concentration of approximately 1 microM, similar to cytotoxic snake PLA(2)s with strong enzymatic activity. TI-Nh is the first thrombin inhibitor found in the venom of the Elapidae snake family, and it is the first phospholipase shown to inhibit thrombin.


Assuntos
Venenos Elapídicos/enzimologia , Venenos Elapídicos/farmacologia , Fosfolipases A2/farmacologia , Trombina/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Coagulação Sanguínea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas do Sistema Complemento/efeitos dos fármacos , Dessecação , Egito , Venenos Elapídicos/química , Fator VIIa/antagonistas & inibidores , Fibrina/química , Humanos , Técnicas In Vitro , Dados de Sequência Molecular , Peso Molecular , Neuritos/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Proteínas/química , Inibidores de Serina Proteinase/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tromboplastina/antagonistas & inibidores , Inibidores da Tripsina/farmacologia , Tempo de Coagulação do Sangue Total
15.
J Neurochem ; 111(4): 934-44, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19712060

RESUMO

alpha-Conotoxins interact with nicotinic acetylcholine receptors (nAChRs) and acetylcholine-binding proteins (AChBPs) at the sites for agonists/competitive antagonists. alpha-Conotoxins blocking muscle-type or alpha7 nAChRs compete with alpha-bungarotoxin. However, alpha-conotoxin ImII, a close homolog of the alpha7 nAChR-targeting alpha-conotoxin ImI, blocked alpha7 and muscle nAChRs without displacing alpha-bungarotoxin (Ellison et al. 2003, 2004), suggesting binding at a different site. We synthesized alpha-conotoxin ImII, its ribbon isomer (ImIIiso), 'mutant' ImII(W10Y) and found similar potencies in blocking human alpha7 and muscle nAChRs in Xenopus oocytes. Both isomers displaced [(125)I]-alpha-bungarotoxin from human alpha7 nAChRs in the cell line GH(4)C(1) (IC(50) 17 and 23 microM, respectively) and from Lymnaea stagnalis and Aplysia californica AChBPs (IC(50) 2.0-9.0 microM). According to SPR measurements, both isomers bound to immobilized AChBPs and competed with AChBP for immobilized alpha-bungarotoxin (K(d) and IC(50) 2.5-8.2 microM). On Torpedo nAChR, alpha-conotoxin [(125)I]-ImII(W10Y) revealed specific binding (K(d) 1.5-6.1 microM) and could be displaced by alpha-conotoxin ImII, ImIIiso and ImII(W10Y) with IC(50) 2.7, 2.2 and 3.1 microM, respectively. As alpha-cobratoxin and alpha-conotoxin ImI displaced [(125)I]-ImII(W10Y) only at higher concentrations (IC(50)> or = 90 microM), our results indicate that alpha-conotoxin ImII and its congeners have an additional binding site on Torpedo nAChR distinct from the site for agonists/competitive antagonists.


Assuntos
Proteínas de Transporte/metabolismo , Conotoxinas/química , Conotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Torpedo/metabolismo , Acetilcolina/farmacologia , Sequência de Aminoácidos , Animais , Aplysia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Ligação Competitiva/efeitos dos fármacos , Bungarotoxinas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Isótopos de Iodo/metabolismo , Dados de Sequência Molecular , Oócitos , Ensaio Radioligante/métodos , Receptores Nicotínicos/genética , Serina Endopeptidases , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ressonância de Plasmônio de Superfície/métodos , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
16.
Toxicon ; 53(1): 162-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19041663

RESUMO

Cysteine-rich proteins found in animal venoms (CRISP-Vs) are members of a large family of cysteine-rich secretory proteins (CRISPs). CRISP-Vs acting on different ion channels were found in venoms or mRNA (cDNA) encoding CRISP-Vs were cloned from snakes of three main families (Elapidae, Colubridae and Viperidae). About thirty snake CRISP-Vs were sequenced so far, however no complete sequence for CRISP-V from Viperinae subfamily was reported. We have cloned and sequenced for the first time cDNAs encoding CRISP-Vs from Vipera nikolskii and Vipera berus vipers (Viperinae). The deduced mature CRISP-V amino acid sequences consist of 220 amino acid residues. Phylogenetic analysis showed that viper proteins are closely related to those of Crotalinae snakes. The presence of CRISP-V in the V. berus venom was revealed using a combination of gel-filtration chromatography, electrophoresis and MALDI mass spectrometry. The finding of the putative channel blocker in viper venom may indicate its action on prey nervous system.


Assuntos
Cisteína/química , Filogenia , Proteínas/química , Proteínas/genética , Venenos de Víboras/química , Viperidae/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Dados de Sequência Molecular , RNA/química , RNA/genética , Venenos de Víboras/genética , Venenos de Víboras/metabolismo , Viperidae/genética
17.
J Biol Chem ; 283(21): 14571-80, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18381281

RESUMO

Disulfide-bound dimers of three-fingered toxins have been discovered in the Naja kaouthia cobra venom; that is, the homodimer of alpha-cobratoxin (a long-chain alpha-neurotoxin) and heterodimers formed by alpha-cobratoxin with different cytotoxins. According to circular dichroism measurements, toxins in dimers retain in general their three-fingered folding. The functionally important disulfide 26-30 in polypeptide loop II of alpha-cobratoxin moiety remains intact in both types of dimers. Biological activity studies showed that cytotoxins within dimers completely lose their cytotoxicity. However, the dimers retain most of the alpha-cobratoxin capacity to compete with alpha-bungarotoxin for binding to Torpedo and alpha7 nicotinic acetylcholine receptors (nAChRs) as well as to Lymnea stagnalis acetylcholine-binding protein. Electrophysiological experiments on neuronal nAChRs expressed in Xenopus oocytes have shown that alpha-cobratoxin dimer not only interacts with alpha7 nAChR but, in contrast to alpha-cobratoxin monomer, also blocks alpha3beta2 nAChR. In the latter activity it resembles kappa-bungarotoxin, a dimer with no disulfides between monomers. These results demonstrate that dimerization is essential for the interaction of three-fingered neurotoxins with heteromeric alpha3beta2 nAChRs.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Animais , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Dimerização , Elapidae , Humanos , Modelos Moleculares , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Curr Pharm Des ; 13(28): 2906-15, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17979735

RESUMO

Snakes from several genera (mostly from Naja genus) belonging to the Elapidae family are usually named cobras. The effect of cobra bites is mainly neurotoxic. This is explained by the presence of highly potent alpha-neurotoxin in their venoms. The other two highly toxic components of cobra venoms are cytotoxins and phospholipases A(2). These three types of toxins constitute a major part of cobra venom. They have attracted the attention of researchers for many years and have been very well studied and thoroughly described. However cobra venoms contain also many other less abundant components which possess very low toxicity or even are not toxic at all. These components, mostly proteins, belong to different structural and functional types, and the reason for their presence in the venom is not always evident. Some of them are known for many years (e.g., nerve growth factor and cobra venom factor); others (e.g., cysteine rich secretory proteins, CRISPs) were discovered only recently. There are non-lethal proteins with unique biological activities that can be used as biochemical tools, while others may be regarded as potential leads for drug design. This review is the first attempt to systemize the available data on non-lethal components of cobra venom.


Assuntos
Venenos Elapídicos/análise , Venenos Elapídicos/química , Peptídeos/análise , Peptídeos/química , Animais , Proteínas Neurotóxicas de Elapídeos/análise , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/toxicidade , Venenos Elapídicos/toxicidade , Humanos , Peptídeos/toxicidade
19.
Toxicon ; 49(7): 995-1001, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17341427

RESUMO

The existing data indicate that snake venom is most toxic towards the natural vertebrate preys. Several species of snake include arthropods in their food. However, there is no available data on the toxicity of venom from entomophagous snakes towards their prey. We have studied the toxicity of venom from vipers of Pelias group towards crickets Gryllus assimilis. The Pelias group includes several closely related viper species inhabiting mainly the South European part of Russia, and they differ in their feeding preferences. Snakes from the Vipera renardi, Vipera lotievi, Vipera kaznakovi, and Vipera orlovi species feed on wide range of animals including insects, whereas snakes from Vipera berus and Vipera nikolskii species do not include insects in their diet. We have found that the venom from vipers that include insects in their diet possesses greater toxicity towards crickets. The greatest toxicity was observed for the venom from V. lotievi, which displays a preference for insects in its diet. Therefore, based on our data, we suggest that the viper entomophagy is not a result of behavior plasticity, but is probably determined at a genetic level.


Assuntos
Gryllidae/efeitos dos fármacos , Venenos de Víboras/toxicidade , Viperidae/fisiologia , Animais , Comportamento Alimentar , Testes de Toxicidade , Venenos de Víboras/isolamento & purificação
20.
Toxicon ; 46(4): 394-403, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16054663

RESUMO

Two forms of complement-depleting cobra venom factor (CVFm1 and CVFm2), possessing molecular masses of 142.6 kDa (CVFm1) and 143.1 kDa (CVFm2), according to MALDI mass-spectrometry, were isolated from the Naja melanoleuca cobra venom. As shown by polyacrylamide gel electrophoresis in the presence of SDS, both forms similarly to factor from the Naja kaouthia cobra venom (CVFk) consist of three polypeptide chains with molecular masses of about 70, 50, and 30 kDa, the two large subunits being glycosylated. As determined by MALDI mass-spectrometry, 30 kDa subunits of CVFm1 and CVFm2 have considerably different finger-prints of tryptic digests that suggests differences in their amino acid sequences. A study of activity in vivo has shown no significant differences in C3 consumption by CVFm1, CVFm2 and CVFk in mouse blood. However, as shown by an immunoassay method, they differ in their ability to activate the complement system via C3 conversion, the ratio of these activities for CVFm1:CVFm2:CVFk being 2.5:1.6:1. Kinetic studies using a hemolytic test showed that complement depletion by CVFm1 is faster than that by CVFm2. Thus, for the first time the presence in a single venom of two forms of CVF differing by both amino acid sequence and biological activity has been shown.


Assuntos
Complemento C3/metabolismo , Venenos Elapídicos/isolamento & purificação , Venenos Elapídicos/metabolismo , Elapidae , Animais , Ensaio de Atividade Hemolítica de Complemento , Eletroforese em Gel de Poliacrilamida , Imunoensaio , Cinética , Espectrometria de Massas , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA