Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 1015, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343692

RESUMO

We introduce new theoretical insights into two-population asymmetric games allowing for an elegant symmetric decomposition into two single population symmetric games. Specifically, we show how an asymmetric bimatrix game (A,B) can be decomposed into its symmetric counterparts by envisioning and investigating the payoff tables (A and B) that constitute the asymmetric game, as two independent, single population, symmetric games. We reveal several surprising formal relationships between an asymmetric two-population game and its symmetric single population counterparts, which facilitate a convenient analysis of the original asymmetric game due to the dimensionality reduction of the decomposition. The main finding reveals that if (x,y) is a Nash equilibrium of an asymmetric game (A,B), this implies that y is a Nash equilibrium of the symmetric counterpart game determined by payoff table A, and x is a Nash equilibrium of the symmetric counterpart game determined by payoff table B. Also the reverse holds and combinations of Nash equilibria of the counterpart games form Nash equilibria of the asymmetric game. We illustrate how these formal relationships aid in identifying and analysing the Nash structure of asymmetric games, by examining the evolutionary dynamics of the simpler counterpart games in several canonical examples.


Assuntos
Jogos Experimentais , Modelos Estatísticos , Feminino , Teoria dos Jogos , Humanos , Masculino
2.
Nature ; 538(7626): 471-476, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27732574

RESUMO

Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.

3.
Nature ; 518(7540): 529-33, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25719670

RESUMO

The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.


Assuntos
Inteligência Artificial , Reforço Psicológico , Jogos de Vídeo , Algoritmos , Humanos , Modelos Psicológicos , Redes Neurais de Computação , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA