Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
ACS Appl Mater Interfaces ; 16(14): 17946-17953, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38512303

RESUMO

Recently, lead halide perovskite nanocrystals (NCs) have shown great potential and have been widely studied in lighting and optoelectronic fields. However, the long-term stability of perovskite NCs under irradiation is an important challenge for their application in practice. Mn2+ dopants are mostly proposed as substitutes for the Pb site in perovskite NCs synthesized through the hot-injection method, with the aim of improving both photo- and thermal stability. In this work, we employed a facile ligand-assisted reprecipitate strategy to introduce Mn ions into perovskite lattice, and the results showed that Mn3+ instead of Mn2+, even with a very low level of incorporation of 0.18 mol % as interstitial dopant, can enhance the photostability of perovskite binder film under the ambient conditions without emission change, and the photoluminescent efficiency can retain 70% and be stable under intensive irradiation for 12 h. Besides, Mn3+ incorporation could prolong the photoluminescent decay time by passivating trap defects and modifying the distortion of the lattice, which underscores the significant potential for application as light emitters.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37906729

RESUMO

Colloidal AgIn5S8/ZnS quantum dots (QDs) have recently emerged as a promising, efficient, nontoxic, down-shifting material in optoelectronic devices. These QDs exhibit a high photoluminescent quantum yield and offer a range of potential applications, specifically in the field of photovoltaics (PVs) for light management. In this work, we report an eco-friendly method to synthesize AgIn5S8/ZnS QDs and deposit them on commercial silicon solar cells (with an active area of 7.5 cm2), with which the short-circuit current (JSC) enhanced by 1.44% and hence the power conversion efficiency by 2.51%. The enhancements in PV performance are mainly attributable to the improved external quantum efficiency in the ultraviolet region and reduced surface reflectance in the ultraviolet and near-infrared regions. We study the effect of QD concentration on the bifunctions of downshifting and antireflection. The optimal 15 mg/mL QDs blade-coated onto the Si solar cells realize maximum current generation as the reflectance loss in the visible wavelength is compensated by the minimized reflection in the near-infrared region.

4.
Materials (Basel) ; 16(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36902985

RESUMO

This research focuses on LPE growth, and the examination of the optical and photovoltaic properties of single crystalline film (SCF) phosphors based on Ce3+-doped Y3MgxSiyAl5-x-yO12 garnets with Mg and Si contents in x = 0-0.345 and y = 0-0.31 ranges. The absorbance, luminescence, scintillation, and photocurrent properties of Y3MgxSiyAl5-x-yO12:Ce SCFs were examined in comparison with Y3Al5O12:Ce (YAG:Ce) counterpart. Especially prepared YAG:Ce SCFs with a low (x, y < 0.1) concentration of Mg2+ and Mg2+-Si4+ codopants also showed a photocurrent that increased with rising Mg2+ and Si4+ concentrations. Mg2+ excess was systematically present in as-grown Y3MgxSiyAl5-x-yO12:Ce SCFs. The as-grown SCFs of these garnets under the excitation of α-particles had a low light yield (LY) and a fast scintillation response with a decay time in the ns range due to producing the Ce4+ ions as compensators for the Mg2+ excess. The Ce4+ dopant recharged to the Ce3+ state after SCF annealing at T > 1000 °C in a reducing atmosphere (95%N2 + 5%H2). Annealed SCF samples exhibited an LY of around 42% and similar scintillation decay kinetics to those of the YAG:Ce SCF counterpart. The photoluminescence studies of Y3MgxSiyAl5-x-yO12:Ce SCFs provide evidence for Ce3+ multicenter formation and the presence of an energy transfer between various Ce3+ multicenters. The Ce3+ multicenters possessed variable crystal field strengths in the nonequivalent dodecahedral sites of the garnet host due to the substitution of the octahedral positions by Mg2+ and the tetrahedral positions by Si4+. In comparison with YAG:Ce SCF, the Ce3+ luminescence spectra of Y3MgxSiyAl5-x-yO12:Ce SCFs greatly expanded in the red region. Using these beneficial trends of changes in the optical and photocurrent properties of Y3MgxSiyAl5-x-yO12:Ce garnets as a result of Mg2+ and Si4+ alloying, a new generation of SCF converters for white LEDs, photovoltaics, and scintillators could be developed.

5.
Materials (Basel) ; 15(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35683240

RESUMO

This work is dedicated to the crystallization and luminescent properties of a prospective Ca2YMgScSi3O12:Ce (CYMSSG:Ce) micropowder (MP) phosphor converter (pc) for a white light-emitting LED (WLED). The set of MP samples was obtained by conventional solid-phase synthesis using different amounts of B2O3 flux in the 1-5 mole percentage range. The luminescent properties of the CYMSSG:Ce MPs were investigated at different Ce3+ concentrations in the 1-5 atomic percentage range. The formation of several Ce3+ multicenters in the CYMSSG:Ce MPs was detected in the emission and excitation spectra as well as the decay kinetics of the Ce3+ luminescence. The creation of the Ce3+ multicenters in CYMSSG:Ce garnet results from: (i) the substitution by the Ce3+ ions of the heterovalent Ca2+ and Y3+ cations in the dodecahedral position of the garnet host; (ii) the inhomogeneous local environment of the Ce3+ ions when the octahedral positions of the garnet are replaced by heterovalent Mg2+ and Sc3+ cations and the tetrahedral positions are replaced by Si4+ cations. The presence of Ce3+ multicenters significantly enhances the Ce3+ emission band in the red range in comparison with conventional YAG:Ce phosphor. Prototypes of the WLEDs were also created in this work by using CYMSSG:Ce MP films as phosphor converters. Furthermore, the dependence of the photoconversion properties on the layer thickness of the CYMSSG:Ce MP was studied as well. The changes in the MP layer thickness enable the tuning of the white light thons from cold white/daylight to neutral white. The obtained results are encouraging and can be useful for the development of a novel generation of pcs for WLEDs.

6.
J Phys Chem Lett ; 13(17): 3824-3830, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35466679

RESUMO

CsPbBr3 single crystals have potential for application in ionizing-radiation detection devices due to their optimal optoelectronic properties. Yet, their mixed ionic-electronic conductivity produces instability and hysteretic artifacts hindering the long-term device operation. Herein, we report an electrical characterization of CsPbBr3 single crystals operating up to the time scale of hours. Our fast time-of-flight measurements reveal bulk mobilities of 13-26 cm2 V-1 s-1 with a negative voltage bias dependency. By means of a guard ring (GR) configuration, we separate bulk and surface mobilities showing significant qualitative and quantitative transport differences. Our experiments of current transients and impedance spectroscopy indicate the formation of several regimes of space-charge-limited current (SCLC) associated with mechanisms similar to the Poole-Frenkel ionized-trap-assisted transport. We show that the ionic-SCLC seems to be an operational mode in this lead halide perovskite, despite the fact that experiments can be designed where the contribution of mobile ions to transport is negligible.

7.
Nat Commun ; 12(1): 2191, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850155

RESUMO

Stability of perovskite-based photovoltaics remains a topic requiring further attention. Cation engineering influences perovskite stability, with the present-day understanding of the impact of cations based on accelerated ageing tests at higher-than-operating temperatures (e.g. 140°C). By coupling high-throughput experimentation with machine learning, we discover a weak correlation between high/low-temperature stability with a stability-reversal behavior. At high ageing temperatures, increasing organic cation (e.g. methylammonium) or decreasing inorganic cation (e.g. cesium) in multi-cation perovskites has detrimental impact on photo/thermal-stability; but below 100°C, the impact is reversed. The underlying mechanism is revealed by calculating the kinetic activation energy in perovskite decomposition. We further identify that incorporating at least 10 mol.% MA and up to 5 mol.% Cs/Rb to maximize the device stability at device-operating temperature (<100°C). We close by demonstrating the methylammonium-containing perovskite solar cells showing negligible efficiency loss compared to its initial efficiency after 1800 hours of working under illumination at 30°C.

8.
RSC Adv ; 11(34): 21145-21152, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35479360

RESUMO

The effect of spontaneous alloying of non-stoichiometric aqueous Ag-In-S (AIS) and Cu-In-S (CIS) quantum dots (QDs) stabilized by surface glutathione (GSH) complexes was observed spectroscopically due to the phenomenon of band bowing typical for the solid-solution Cu(Ag)-In-S (CAIS) QDs. The alloying was found to occur even at room temperature and can be accelerated by a thermal treatment of colloidal mixtures at around 90 °C with no appreciable differences in the average size observed between alloyed and original individual QDs. An equilibrium between QDs and molecular and clustered metal-GSH complexes, which can serve as "building material" for the new mixed CAIS QDs, during the spontaneous alloying is assumed to be responsible for this behavior of GSH-capped ternary QDs. The alloying effect is expected to be of a general character for different In-based ternary chalcogenides.

9.
Nat Commun ; 11(1): 6328, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303755

RESUMO

Light-induced halide segregation limits the bandgap tunability of mixed-halide perovskites for tandem photovoltaics. Here we report that light-induced halide segregation is strain-activated in MAPb(I1-xBrx)3 with Br concentration below approximately 50%, while it is intrinsic for Br concentration over approximately 50%. Free-standing single crystals of CH3NH3Pb(I0.65Br0.35)3 (35%Br) do not show halide segregation until uniaxial pressure is applied. Besides, 35%Br single crystals grown on lattice-mismatched substrates (e.g. single-crystal CaF2) show inhomogeneous segregation due to heterogenous strain distribution. Through scanning probe microscopy, the above findings are successfully translated to polycrystalline thin films. For 35%Br thin films, halide segregation selectively occurs at grain boundaries due to localized strain at the boundaries; yet for 65%Br films, halide segregation occurs in the whole layer. We close by demonstrating that only the strain-activated halide segregation (35%Br/45%Br thin films) could be suppressed if the strain is properly released via additives (e.g. KI) or ideal substrates (e.g. SiO2).

10.
Nano Lett ; 20(5): 3090-3097, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32283026

RESUMO

Despite the intense research on photovoltaic lead halide perovskites, reported optical properties as basic as the absorption onset and the optical band gap vary significantly. To unambiguously answer the question whether the discrepancies are a result of differences between bulk and "near-surface" material, we perform two nonlinear spectroscopies with drastically different information depths on single crystals of the prototypical (CH3NH3)PbI3 methylammonium lead iodide. Two-photon absorption, detected via the resulting generation of carriers and photocurrents (2PI-PC), probes the interband transitions with an information depth in the millimeter range relevant for bulk (single-crystal) material. In contrast, the transient magneto-optical Kerr effect (trMOKE) measured in a reflection geometry determines the excitonic transition energies in the region near (hundreds of nm) the surface which also determine the optical properties in typical thin films. To identify differences between structural phases, we sweep the sample temperature across the orthorhombic-tetragonal phase transition temperature. In the application-relevant room-temperature tetragonal phase (at 170 K), we find a bulk band gap of 1.55 ± 0.01 eV, whereas in the near-surface region excitonic transitions occur at 1.59 ± 0.01 eV. The latter value is consistent with previous reflectance measurements by other groups and considerably higher than the bulk band gap. The small band gap of the bulk material explains the extended infrared absorption of crystalline perovskite solar cells, the low-energy bands which carry optically driven spin-polarized currents, and the narrow bandwidth of crystalline perovskite photodetectors making use of the spectral filtering at the surface.

11.
Adv Mater ; 31(8): e1806516, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30633825

RESUMO

Mesoscale-structured materials offer broad opportunities in extremely diverse applications owing to their high surface areas, tunable surface energy, and large pore volume. These benefits may improve the performance of materials in terms of carrier density, charge transport, and stability. Although metal oxides-based mesoscale-structured materials, such as TiO2 , predominantly hold the record efficiency in perovskite solar cells, high temperatures (above 400 °C) and limited materials choices still challenge the community. A novel route to fabricate organic-based mesoscale-structured interfaces (OMI) for perovskite solar cells using a low-temperature and green solvent-based process is presented here. The efficient infiltration of organic porous structures based on crystalline nanoparticles allows engineering efficient "n-i-p" and "p-i-n" perovskite solar cells with enhanced thermal stability, good performance, and excellent lateral homogeneity. The results show that this method is universal for multiple organic electronic materials, which opens the door to transform a wide variety of organic-based semiconductors into scalable n- or p-type porous interfaces for diverse advanced applications.

12.
ACS Appl Mater Interfaces ; 10(42): 36398-36406, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30264555

RESUMO

Dielectric mirrors based on bilayers of polystyrene- block-poly(ethylene- ran-butylene)- block-polystyrene (SEBS) and poly(vinyl alcohol) (PVA)-zirconium dioxide (ZrO2) nanocomposites are fabricated for vapor sensing. When exposed to specific solvent vapor, the layers of dielectric mirrors can gradually swell and cause a red-shift of the reflection band. Because PVA solely responds to water and SEBS is sensitive to several different types of organic solvents, the mirrors can respond to a large variety of solvents. The dual-functional hydrophilic ZrO2 nanoparticles are introduced to not only enlarge the refractive index contrast but also increase the permeability. Time-resolved measurements show that mirrors with nanoparticles have a significantly faster response than those without nanoparticles. Moreover, the dependence on relative humidity is studied for representative solvents, and several types of solvents are selected to show the dependence on the solvent-polymer interaction parameters at typical relative humidity, which allows one to predict the responsivity and selectivity of the sensors.

13.
Proc Natl Acad Sci U S A ; 115(38): 9509-9514, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30181293

RESUMO

Lead halide perovskites are used in thin-film solar cells, which owe their high efficiency to the long lifetimes of photocarriers. Various calculations find that a dynamical Rashba effect could significantly contribute to these long lifetimes. This effect is predicted to cause a spin splitting of the electronic bands of inversion-symmetric crystalline materials at finite temperatures, resulting in a slightly indirect band gap. Direct experimental evidence of the existence or the strength of the spin splitting is lacking. Here, we resonantly excite photocurrents in single crystalline ([Formula: see text])[Formula: see text] with circularly polarized light to clarify the existence of spin splittings in the band structure. We observe a circular photogalvanic effect, i.e., the photocurrent depends on the light helicity, in both orthorhombic and tetragonal ([Formula: see text])[Formula: see text] At room temperature, the effect peaks for excitation photon energies [Formula: see text] meV below the direct optical band gap. Temperature-dependent measurements reveal a sign change of the effect at the orthorhombic-tetragonal phase transition, indicating different microscopic origins in the two phases. Within the tetragonal phase, both [Formula: see text] and the amplitude of the circular photogalvanic effect increase with temperature. Our findings support a dynamical Rashba effect in this phase, i.e., a spin splitting caused by thermally induced structural fluctuations which break inversion symmetry.

14.
Phys Chem Chem Phys ; 20(36): 23674-23683, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30191206

RESUMO

Here, brand new ternary hybrid solar cells comprising perovskite nanocrystals (NCs) with a complementary absorption profile of the organic host matrix are reported. In particular, NH2CH[double bond, length as m-dash]NH2PbI3 (FAPbI3) perovskite NCs are implemented in bulk heterojunction organic solar cells based on the pDPP5T-2 electron donating polymer and a [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) acceptor at various loading amounts and the fabricated hybrid photovoltaics are thoroughly studied by employing different optoelectrical characterization methods. Current-voltage measurements and photoinduced charge carrier extraction by linear increasing voltage (photo-CELIV) reveal improved charge generation and charge transport properties upon incorporation of perovskite NCs into the photo-active layer of the hybrid solar cell. The power conversion efficiency (PCE) of the hybrid solar cell comprising 5% perovskite NCs is 10% enhanced compared to the organic reference, mainly due to the enlarged light harvesting and increased short circuit current density (Jsc). However, results suggest that introducing a higher amount of perovskite content induces bimolecular and trap-assisted recombination in the ternary devices. We perform a comprehensive transient absorption study of the charge transfer/transport mechanisms by employing femto-second pump-probe transient absorption spectroscopy (fs-TAS). fs-TAS measurements demonstrate a slower charge carrier recombination rate due to the introduction of perovskite NCs into the photoactive layer. Results reveal that DPP injects electrons from the singlet excited state into the perovskite NCs, which causes the desired cascading charge carrier transfer. In ternary blends, a small amount of FAPbI3 NCs provides an additional pathway in favor of the charge-separated state via the NCs, which, despite accelerating the depopulation of DPP's singlet excited state slightly slows down the charge-separation process between DPP and PC61BM. Interestingly, the loss processes are slowed down; an effect that is more important and, hence, explains the improved solar cell efficiency.

15.
ACS Appl Mater Interfaces ; 10(35): 29532-29542, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30088904

RESUMO

Noble metal cocatalysts are conventionally a crucial factor in oxide-semiconductor-based photocatalytic hydrogen generation. In the present work, we show that optimized high-temperature hydrogenation of commercially available strontium titanate (SrTiO3) powder can be used to engineer an intrinsic cocatalytic shell around nanoparticles that can create a photocatalyst that is highly effective without the use of any additional cocatalyst for hydrogen generation from neutral aqueous methanol solutions. This intrinsic activation effect can also be observed for SrTiO3[100] single crystal as well as Nb-doped SrTiO3[100] single crystal. For all types of SrTiO3 samples (nanopowders and either of the single crystals), hydrogenation under optimum conditions leads to a surface-hydroxylated layer together with lattice defects visible by transmission electron microscopy, electron paramagnetic resonance (EPR), and photoluminescence (PL). Active samples provide specific defects identified by EPR, PL, and electron-energy loss spectroscopy as Ti3+ states in a defective matrix-this is in contrast to the inactive defects formed in other reductive atmospheres. In aqueous media, active SrTiO3 samples show a significant negative shift of the flatband potential (in photoelectrochemical as well as in capacitance data) and a lower charge-transfer resistance for photoexcited electrons. We therefore ascribe the remarkable cocatalyst-free activation of the material to a synergy between thermodynamics (altered interface energetics induced by hydroxylation) and kinetics (charge transfer mediation by suitable Ti3+ states).

17.
Nano Lett ; 18(3): 2172-2178, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29498866

RESUMO

Mixed-halide perovskites have emerged as promising materials for optoelectronics due to their tunable band gap in the entire visible region. A challenge remains, however, in the photoinduced phase segregation, narrowing the band gap of mixed-halide perovskites under illumination thus restricting applications. Here, we use a combination of spatially resolved and bulk measurements to give an in-depth insight into this important yet unclear phenomenon. We demonstrate that photoinduced phase segregation in mixed-halide perovskites selectively occurs at the grain boundaries rather than within the grain centers by using shear-force scanning probe microscopy in combination with confocal optical spectroscopy. Such difference is further evidenced by light-biased bulk Fourier-transform photocurrent spectroscopy, which shows the iodine-rich domain as a minority phase coexisting with the homogeneously mixed phase during illumination. By mapping the surface potential of mixed-halide perovskites, we evidence the higher concentration of positive space charge near the grain boundary possibly provides the initial driving force for phase segregation, while entropic mixing dominates the reverse process. Our work offers detailed insight into the microscopic processes occurring at the boundary of crystalline perovskite grains and will support the development of better passivation strategies, ultimately allowing the processing of more environmentally stable perovskite films.

19.
Nano Lett ; 17(5): 2765-2770, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28388067

RESUMO

In the past few years, hybrid organic-inorganic and all-inorganic metal halide perovskite nanocrystals have become one of the most interesting materials for optoelectronic applications. Here, we report a facile and rapid room temperature synthesis of 15-25 nm formamidinium CH(NH2)2PbX3 (X = Cl, Br, I, or mixed Cl/Br and Br/I) colloidal nanocrystals by ligand-assisted reprecipitation (LARP). The cubic and platelet-like nanocrystals with their emission in the range of 415-740 nm, full width at half-maximum (fwhm) of 20-44 nm, and radiative lifetimes of 5-166 ns enable band gap tuning by halide composition as well as by their thickness tailoring; they have a high photoluminescence quantum yield (up to 85%), colloidal and thermodynamic stability. Combined with surface modification that prevents degradation by water, this nanocrystalline material is an ideal candidate for optoelectronic devices and applications. In addition, optoelectronic measurements verify that the photodetector based on FAPbI3 nanocrystals paves the way for perovskite quantum dot photovoltaics.

20.
ACS Appl Mater Interfaces ; 9(12): 10971-10982, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28263058

RESUMO

A novel main-chain polyfullerene, poly[fullerene-alt-2,5-bis(octyloxy)terephthalaldehyde] (PPC4), is investigated for its hypothesized superior morphological stability as an electron-accepting material in organic photovoltaics relative to the widely used fullerene phenyl-C61-butyric acid methyl ester (PCBM). When mixed with poly(3-hexylthiophene-2,5-diyl) (P3HT), PPC4 affords low-charge-generation yields because of poor intermixing within the blend. The adoption of a multiacceptor system, by introducing PCBM into the P3HT:polyfullerene blend, was found to lead to a 3-fold enhancement in charge generation, affording power conversion efficiencies very close to that of the prototypical P3HT:PCBM binary control. Upon thermal stressing and in contrast to the P3HT:PCBM binary, photovoltaic devices based on the multiacceptor system demonstrated significantly improved stability, outperforming the control because of suppression of the PCBM migration and aggregation processes responsible for rapid device failure. We rationalize the influence of the fullerene miscibility and its implications on the device performance in terms of a thermodynamic model based on Flory-Huggins solution theory. Finally, the potential universal applicability of this approach for thermal stabilization of organic solar cells is demonstrated, utilizing an alternative low-band-gap polymer-donor system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA