Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Chem ; 12: 1371637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638879

RESUMO

This study presents a comprehensive structural analysis of the adducts formed upon the reaction of two Ru(III) complexes [HIsq][trans-RuIIICl4(dmso)(Isq)] (1) and [H2Ind][trans-RuIIICl4(dmso)(HInd)] (2) (where HInd-indazole, Isq-isoquinoline, analogs of NAMI-A) and two Ru(II) complexes, cis-[RuCl2(dmso)4] (c) and trans-[RuCl2(dmso)4] (t), with hen-egg white lysozyme (HEWL). Additionally, the crystal structure of an adduct of human lysozyme (HL) with ruthenium complex, [H2Ind][trans-RuCl4(dmso)(HInd)] was solved. X-ray crystallographic data analysis revealed that all studied Ru complexes, regardless of coordination surroundings and metal center charge, coordinate to the same amino acids (His15, Arg14, and Asp101) of HEWL, losing most of their original ligands. In the case of the 2-HL adduct, two distinct metalation sites: (i) Arg107, Arg113 and (ii) Gln127, Gln129, were identified. Crystallographic data were supported by studies of the interaction of 1 and 2 with HEWL in an aqueous solution. Hydrolytic stability studies revealed that both complexes 1 and 2 liberate the N-heterocyclic ligand under crystallization-like conditions (pH 4.5) as well as under physiological pH conditions, and this process is not significantly affected by the presence of HEWL. A comparative examination of nine crystal structures of Ru complexes with lysozyme, obtained through soaking and co-crystallization experiments, together with in-solution studies of the interaction between 1 and 2 with HEWL, indicates that the hydrolytic release of the N-heterocyclic ligand is one of the critical factors in the interaction between Ru complexes and lysozyme. This understanding is crucial in shedding light on the tendency of Ru complexes to target diverse metalation sites during the formation and in the final forms of the adducts with proteins.

2.
Chem Rec ; 23(12): e202300278, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821418

RESUMO

The presented Review is focused on the latest research in the field of inorganic chemistry performed by the van Eldik group and his collaborators. The first part of the manuscript concentrates on the interaction of nitric oxide and its derivatives with biologically important compounds. We summarized mechanistic information on the interaction between model porphyrin systems (microperoxidase) and NO as well as the recent studies on the formation of nitrosylcobalamin (CblNO). The following sections cover the characterization of the Ru(II)/Ru(III) mixed-valence ion-pair complexes, including Ru(II)/Ru(III)(edta) complexes. The last part concerns the latest mechanistic information on the DFT techniques applications. Each section presents the most important results with the mechanistic interpretations.

3.
Arch Immunol Ther Exp (Warsz) ; 71(1): 13, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37245200

RESUMO

Exposure to air particulate matter (PM) is linked to the blood oxidative stress and systemic inflammation. The aim of this study was to elucidate whether oxidative PM modification of ovalbumin (OVA), the major antioxidant serum protein, may alter its antigenicity and/or immunogenicity. Ovalbumin was exposed via dialysis to the standard urban PM (SRM 1648a) or to PM with removed organic content (encoded as LAP). Both structural changes and biological properties of PM-modified OVA were measured. T lymphocytes and dendritic cells (the major antigen-presenting cells) isolated from C57BL/6 and OT-II (323-339 epitope) OVA-specific T cell receptor (TCR)-transgenic mice were used to test the effect of PM on OVA immunogenicity. The immunogenicity of both SRM 1648a and LAP-modified OVA was significantly higher than that of control OVA, as measured by the epitope-specific T cell proliferation and interferon γ production by the stimulated cells. This effect was associated with mild oxidative changes in the carrier molecule outside the structure of the OVA epitope and with increased resistance to proteolysis of PM-modified OVA. Interestingly, dendritic cells showed enhanced capacity for the uptake of proteins when the cells were cultured with PM-modified OVA. Our results suggest that the enhanced immunogenicity of PM-modified OVA is not associated with altered antigenicity or antigen presentation. However, it may result from slower degradation and longer persistence of modified antigens in dendritic cells. Whether this phenomenon is associated with enhanced risk prevalence of autoimmune diseases observed in the areas with high urban PM pollution needs to be explained.


Assuntos
Antígenos , Material Particulado , Camundongos , Animais , Ovalbumina , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Epitopos
4.
Inorg Chem ; 62(14): 5630-5643, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36995075

RESUMO

Conversion of NO to stable S-nitrosothiols is perceived as a biologically important strategy of NO storage and a signal transduction mechanism. Transition-metal ions and metalloproteins are competent electron acceptors that may promote the formation of S-nitrosothiols from NO. We selected N-acetylmicroperoxidase (AcMP-11), a model of protein heme centers, to study NO incorporation to three biologically relevant thiols (glutathione, cysteine, and N-acetylcysteine). The efficient formation of S-nitrosothiols under anaerobic conditions was confirmed with spectrofluorimetric and electrochemical assays. AcMP-11-assisted incorporation of NO to thiols occurs via an intermediate characterized as an N-coordinated S-nitrosothiol, (AcMP-11)Fe2+(N(O)SR), which is efficiently converted to (AcMP-11)Fe2+(NO) in the presence of NO excess. Two possible mechanisms of S-nitrosothiol formation at the heme-iron were considered: a nucleophilic attack on (AcMP-11)Fe2+(NO+) by a thiolate and a reaction of (AcMP-11)Fe3+(RS) with NO. Kinetic studies, performed under anaerobic conditions, revealed that the reversible formation of (AcMP-11)Fe2+(N(O)SR) occurs in a reaction of RS- with (AcMP-11)Fe2+(NO+) and excluded the second mechanism, indicating that the formation of (AcMP-11)Fe3+(RS) is a dead-end equilibrium. Theoretical calculations revealed that N-coordination of RSNO to iron, forming (AcMP-11)Fe2+(N(O)SR), shortens the S-N bond and increases the complex stability compared to S-coordination. Our work unravels the molecular mechanism of heme-iron-assisted interconversion of NO and low-molecular-weight thiols to S-nitrosothiols and recognizes the reversible NO binding in the form of a heme-Fe2+(N(O)SR) motif as an important biological strategy of NO storage.


Assuntos
S-Nitrosotióis , Nitrosação , S-Nitrosotióis/química , Cinética , Compostos de Sulfidrila , Ferro/química , Heme/metabolismo , Óxido Nítrico/química
5.
Biochemistry ; 62(3): 808-823, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36625854

RESUMO

3-Ketosteroid Δ1-dehydrogenases (KstD) are important microbial flavin enzymes that initiate the metabolism of steroid ring A and find application in the synthesis of steroid drugs. We present a structure of the KstD from Sterolibacterium denitrificans (AcmB), which contains a previously uncharacterized putative membrane-associated domain and extended proton-relay system. The experimental and theoretical studies show that the steroid Δ1-dehydrogenation proceeds according to the Ping-Pong bi-bi kinetics and a two-step base-assisted elimination (E2cB) mechanism. The mechanism is validated by evaluating the experimental and theoretical kinetic isotope effect for deuterium-substituted substrates. The role of the active-site residues is quantitatively assessed by point mutations, experimental activity assays, and QM/MM MD modeling of the reductive half-reaction (RHR). The pre-steady-state kinetics also reveals that the low pH (6.5) optimum of AcmB is dictated by the oxidative half-reaction (OHR), while the RHR exhibits a slight optimum at the pH usual for the KstD family of 8.5. The modeling confirms the origin of the enantioselectivity of C2-H activation and substrate specificity for Δ4-3-ketosteroids. Finally, the cholest-4-en-3-one turns out to be the best substrate of AcmB in terms of ΔG of binding and predicted rate of dehydrogenation.


Assuntos
Oxirredutases , Prótons , Oxirredutases/metabolismo , Catálise , Esteroides/metabolismo , Mutagênese , Cetosteroides , Cinética , Especificidade por Substrato
6.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638839

RESUMO

One of the consequences of long-term exposure to air pollutants is increased mortality and deterioration of life parameters, especially among people diagnosed with cardiovascular diseases (CVD) or impaired respiratory system. Aqueous soluble inorganic components of airborne particulate matter containing redox-active transition metal ions affect the stability of S-nitrosothiols and disrupt the balance in the homeostasis of nitric oxide. Blood plasma's protective ability against the decomposition of S-nitrosoglutathione (GSNO) under the influence of aqueous PM extract among patients with exacerbation of heart failure and coronary artery disease was studied and compared with a group of healthy volunteers. In the environment of CVD patients' plasma, NO release from GSNO was facilitated compared to the plasma of healthy controls, and the addition of ascorbic acid boosted this process. Model studies with albumin revealed that the amount of free thiol groups is one of the crucial factors in GSNO decomposition. The correlation between the concentration of NO released and -SH level in blood plasma supports this conclusion. Complementary studies on gamma-glutamyltranspeptidase activity and ICP-MS multielement analysis of CVD patients' plasma samples in comparison to a healthy control group provide broader insights into the mechanism of cardiovascular risk development induced by air pollution.


Assuntos
Poluição do Ar/efeitos adversos , Doença da Artéria Coronariana/sangue , Insuficiência Cardíaca/sangue , Metais/toxicidade , S-Nitrosoglutationa/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Íons , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/sangue
7.
Inorg Chem ; 60(21): 15948-15967, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34476946

RESUMO

According to the current paradigm, the metal-hydroxo bond in a six-coordinate porphyrin complex is believed to be significantly less reactive in ligand substitution than the analogous metal-aqua bond, due to a much higher strength of the former bond. Here, we report kinetic studies for nitric oxide (NO) binding to a heme-protein model, acetylated microperoxidase-11 (AcMP-11), that challenge this paradigm. In the studied pH range 7.4-12.6, ferric AcMP-11 exists in three acid-base forms, assigned in the literature as [(AcMP-11)FeIII(H2O)(HisH)] (1), [(AcMP-11)FeIII(OH)(HisH)] (2), and [(AcMP-11)FeIII(OH)(His-)] (3). From the pH dependence of the second-order rate constant for NO binding (kon), we determined individual rate constants characterizing forms 1-3, revealing only a ca. 10-fold decrease in the NO binding rate on going from 1 (kon(1) = 3.8 × 106 M-1 s-1) to 2 (kon(2) = 4.0 × 105 M-1 s-1) and the inertness of 3. These findings lead to the abandonment of the dissociatively activated mechanism, in which the reaction rate can be directly correlated with the Fe-OH bond energy, as the mechanistic explanation for the process with regard to 2. The reactivity of 2 is accounted for through the existence of a tautomeric equilibrium between the major [(AcMP-11)FeIII(OH)(HisH)] (2a) and minor [(AcMP-11)FeIII(H2O)(His-)] (2b) species, of which the second one is assigned as the NO binding target due to its labile Fe-OH2 bond. The proposed mechanism is further substantiated by quantum-chemical calculations, which confirmed both the significant labilization of the Fe-OH2 bond in the [(AcMP-11)FeIII(H2O)(His-)] tautomer and the feasibility of the tautomer formation, especially after introducing empirical corrections to the computed relative acidities of the H2O and HisH ligands based on the experimental pKa values. It is shown that the "effective lability" of the axial ligand (OH-/H2O) in 2 may be comparable to the lability of the H2O ligand in 1.


Assuntos
Peroxidases
8.
Molecules ; 26(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443535

RESUMO

Pressure is one of the most important parameters controlling the kinetics of chemical reactions. The ability to combine high-pressure techniques with time-resolved spectroscopy has provided a powerful tool in the study of reaction mechanisms. This review is focused on the supporting role of high-pressure kinetic and spectroscopic methods in the exploration of nitric oxide bioinorganic chemistry. Nitric oxide and other reactive nitrogen species (RNS) are important biological mediators involved in both physiological and pathological processes. Understanding molecular mechanisms of their interactions with redox-active metal/non-metal centers in biological targets, such as cofactors, prosthetic groups, and proteins, is crucial for the improved therapy of various diseases. The present review is an attempt to demonstrate how the application of high-pressure kinetic and spectroscopic methods can add additional information, thus enabling the mechanistic interpretation of various NO bioinorganic reactions.


Assuntos
Química Bioinorgânica , Óxido Nítrico/química , Pressão , Hemeproteínas/análise , Cinética , Porfirinas/química
9.
Dalton Trans ; 50(28): 9923-9933, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34223570

RESUMO

S-Nitrosothiols act as a comparatively long-lived reservoir of releasable nitric oxide (NO) present in vivo in a variety of body fluids. Soluble constituents of air-borne particulate matter (PM) can affect S-nitrosothiol stability and deregulate NO-based biological signaling. PM aqueous extracts of standard urban dust (SRM 1648a) were prepared, and their effect on human serum S-nitrosoalbumin (HSA-NO) stability was studied. The results indicated that PM extracts induced a release of NO from HSA-NO in a dose-dependent manner. To identify the inorganic components of urban PM responsible for HSA-NO decomposition, the effects of individual metal ions and metal ion mixtures, detected in the SRM 1648a aqueous extract, were examined. The dominant role of copper ions (specifically Cu+) was confirmed, but the results did not exclude the influence of other water-soluble PM components. Measurements with the application of several common metal ion chelators confirmed that Cu2+ may participate in NO release from HSA-NO and that reduction to monovalent Cu+ (responsible for S-NO bond breaking) may occur with the participation of S-nitrosoalbumin. The addition of ascorbic acid (AscA) significantly enhanced the effectiveness of NO release by PM extracts both kinetically and quantitatively, by inducing an increase in the reduction of Cu2+ to Cu+. These results indicate that AscA present in the respiratory tract lining fluids and plasma may amplify the activity of inorganic components of PM in S-nitrosothiol decomposition.

10.
Antioxidants (Basel) ; 10(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926051

RESUMO

Lactoperoxidase (LPO) together with its (pseudo)halogenation cycle substrates, H2O2 and thiocyanate ions oxidized to hypothiocyanite ions, form one of the main systems involved in antimicrobial defense within the oral cavity. In bacterial diseases such as dental caries, lactoperoxidase is oxidized to a form known as Compound II, which is characterized by its inability to oxidize SCN-, resulting in a decreased generation of antimicrobial products. Reynoutria sp. rizome extracts, due to their high polyphenol content, have been tested as a source of compounds able to regenerate the antimicrobial activity of lactoperoxidase through converting the Compound II to the native LPO state. In the presented study, acetone extracts of R. japonica, R. sachalinensis, and R. x bohemica, together with their five fractions and four selected polyphenols dominating in the studied in extracts, were tested toward lactoperoxidase reactivating potential. For this purpose, IC50, EC50, and activation percentage were determined by Ellman's method. Furthermore, the rate constants for the conversion of Compound I-Compound II and Compound II-native-LPO in the presence of extracts, extracts fractions, and selected polyphenols were determined. Finally, the ability to enhance the antimicrobial properties of the lactoperoxidase system was tested against Streptococcus mutans. We proved that Reynoutria sp. rhizome is the source of lactoperoxidase peroxidation cycle substrates, which can act as activators and inhibitors of the antimicrobial properties of that system. The presented study shows that the reactivation of lactoperoxidase could become a potential therapeutic target in prevention and treatment support in some infectious oral diseases.

11.
RSC Adv ; 11(35): 21359-21366, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35478799

RESUMO

The reduction of molecular oxygen (O2) and hydrogen peroxide (H2O2) by [RuII(edta)(pz)]2- (edta4- = ethylenediaminetetraacetate; pz = pyrazine) has been studied spectrophotometrically and kinetically in aqueous solution. Exposure of the aqua-analogue [RuII(edta)(H2O)]2- to O2 and H2O2 resulted in the formation of [RuIII(edta)(H2O)]- species, with subsequent formation of the corresponding RuV[double bond, length as m-dash]O complex. A working mechanism for the O2 and H2O2 reduction reactions mediated by the RuII(edta) complexes is proposed. The role of the coordinated water molecule (by its absence or presence in the primary coordination sphere) in controlling the mechanistic pathways, outer-sphere or inner-sphere, is discussed.

12.
J Steroid Biochem Mol Biol ; 202: 105731, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32777354

RESUMO

Cholest-4-en-3-one Δ1-dehydrogenase (AcmB) from Sterolibacterium denitrificans, a key enzyme of the central degradation pathway of cholesterol, is a protein catalyzing Δ1-dehydrogenation of a wide range of 3-ketosteroids. In this study, we demonstrate the application of AcmB in the synthesis of 1-dehydro-3-ketosteroids and investigate the influence of reaction conditions on the catalytic performance of the enzyme. The recombinant AcmB expressed in E. coli BL21(DE3)Magic exhibits a broad pH optimum and pH stability in the range of 6.5 to 9.0. The activity-based pH optimum of AcmB reaction depends on the type of electron acceptor (2,6-dichloroindophenol - DCPIP, phenazine methosulfate - PMS or potassium hexacyanoferrate - K3[Fe(CN)6]) used in the biocatalytic process yielding the best kinetic properties for the reaction with a DCPIP/PMS mixture (kcat/Km = 1.4·105 s-1·M-1 at pH 9.0) followed by DCPIP (kcat/Km = 1.0·105 s-1·M-1 at pH = 6.5) and K3[Fe(CN)6] (kcat/Km = 0.5·102 s-1·M-1 at pH = 8.0). The unique feature of AcmB is its capability to convert both testosterone derivatives (C20-C22) as well as steroids substituted at C17 (C27-C30) such as cholest-4-en-3-one or (25R)-spirost-4-en-3-one (diosgenone). Apparent steady-state kinetic parameters were determined for both groups of AcmB substrates. In a batch reactor synthesis, the solubility of water-insoluble steroids was facilitated by the addition of a solubilizer, 2-hydroxypropyl-ß-cyclodextrin, and organic co-solvent, 2-methoxyethanol. Catalytic properties characterization of AcmB was tested in fed-batch reactor set-ups, using 0.81 µM of isolated enzyme, PMS and aerobic atmosphere resulting in >99% conversion of the C17-C20 3-ketosteroids within 2 h. Finally, the whole cell E. coli system with recombinant enzyme was demonstrated as an efficient biocatalyst in the synthesis of 1-dehydro-3-ketosteroids.


Assuntos
Proteínas de Bactérias/metabolismo , Betaproteobacteria/enzimologia , Cetosteroides/metabolismo , Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Biocatálise , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Oxirredutases/genética , Proteínas Recombinantes/metabolismo
13.
Dalton Trans ; 49(15): 4599-4659, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32162632

RESUMO

This review covers highlights of the work performed in the van Eldik group on inorganic reaction mechanisms over the past two decades in the form of a personal journey. Topics that are covered include, from NO to HNO chemistry, peroxide activation in model porphyrin and enzymatic systems, the wonder-world of RuIII(edta) chemistry, redox chemistry of Ru(iii) complexes, Ru(ii) polypyridyl complexes and their application, relevant physicochemical properties and reaction mechanisms in ionic liquids, and mechanistic insight from computational chemistry. In each of these sections, typical examples of mechanistic studies are presented in reference to related work reported in the literature.

14.
Curr Protein Pept Sci ; 20(11): 1046-1051, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31092176

RESUMO

Lactoferrin was isolated and purified for the first time over 50-years ago. Since then, extensive studies on the structure and function of this protein have been performed and the research is still being continued. In this mini-review we focus on presenting recent scientific efforts towards the elucidation of the role and therapeutic potential of lactoferrin saturated with iron(III) or manganese(III) ions. The difference in biological activity of metal-saturated lactoferrin vs. the unmetalated one is emphasized. The strategies for oral delivery of lactoferrin, are also reviewed, with particular attention to the metalated protein.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lactoferrina/administração & dosagem , Lactoferrina/química , Metais/química , Administração Oral , Animais , Humanos , Ferro/química , Manganês/química
15.
ChemSusChem ; 12(3): 661-671, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30427595

RESUMO

Exposure to airborne particulate matter (PM) is associated with hazardous effects on human health. Soluble constituents of PM may be released in biological fluids and disturb the precisely tuned nitric oxide signaling processes. The influence of aqueous extracts from two types of airborne urban PM (SRM 1648a, a commercially available sample, and KR PM2.5, a sample collected "in-house" in Krakow, Poland) on the stability of S-nitrosoglutathione (GSNO) was investigated. The particle interfaces had no direct effect on the studied reaction, but extracts obtained from both samples facilitated NO release from GSNO. The effectiveness of NO release was significantly affected by glutathione (GSH) and ascorbic acid (AscA). Examination of the combined influence of Cu2+ , Fe3+ , and reductants on GSNO stability revealed copper to be the main GSNO decomposing species. Computational models of nitrosothiols interacting with metal oxide substrates and solvated metal ions support these claims. The study stresses the importance of the interplay between metal ions and biological reductants in S-nitrosothiols decomposition.


Assuntos
Óxido Nítrico/química , Material Particulado/química , S-Nitrosoglutationa/química , Transdução de Sinais , Ácido Ascórbico/química , Cobre/química , Compostos Férricos/química , Glutationa/química , Humanos
16.
Biometals ; 29(6): 1035-1046, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27812766

RESUMO

The antimetastatic ruthenium(III) complex (H2Im)[trans-RuCl4(HIm)(DMSO)] (NAMI-A) as well as its two analogues (H2Ind)[trans-RuCl4(HInd)(DMSO)] (Ru-Ind) and (HIsq)[trans-RuCl4(Isq)(DMSO)] (Ru-Isq) (HIm-imidazole, HInd-indazole, Isq-isoquinoline, DMSO-dimethyl sulfoxide) were tested for their effect on endothelial cell functions in vitro on human skin microvascular endothelial cells (HSkMEC) and human endothelial progenitor cells (HPEC-CB.2) under normoxic (21 % O2) and hypoxic (1 % O2) conditions. All studied complexes showed very low cytotoxicity profiles towards both mature microvascular and precursor endothelial cells (ECs), independently of oxygen concentration. Among tested compounds Ru-Ind exhibited the highest cytotoxicity. The antiangiogenic activity of ruthenium complexes was evaluated for their influence on pseudo-vessels formation by microvascular endothelial cells (HSkMEC) because of their involvement in melanoma progression. Our studies indicated that Ru-Ind and Ru-Isq exhibited hypoxia- and dose-dependent-inhibition of angiogenesis on Matrigel™. Significant hypoxia-selective downregulation of pseudo-vessels formation by Ru-Isq correlates with efficient inhibition of cell motility. Interestingly, in the applied concentration doses migration of endothelial cells was also inhibited by NAMI-A, but the pseudo-vessels formation on Matrigel™ was unaffected. Angiogenesis-related genes expression profile for both mature and precursor ECs indicated that inhibition of angiogenesis, mainly due to Ru-Isq, as compared to NAMI-A and Ru-Ind correlated with downregulation of CD31 and CD144 expression and upregulation of NOTCH4 expression in mature ECs, which is essential for endothelial cell motility and stalk cells organization control. The hypoxia-selective antiangiogenic activity of Ru-Ind and Ru-Isq, NAMI-A analogues makes them potent antimetastatic therapeutics for their selective action in hypoxia which controls tumor pathologic angiogenesis.


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Dimetil Sulfóxido/análogos & derivados , Compostos Organometálicos/química , Rutênio/química , Antineoplásicos/química , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Dimetil Sulfóxido/química , Avaliação Pré-Clínica de Medicamentos/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neovascularização Patológica/genética , Compostos de Rutênio , Hipóxia Tumoral/efeitos dos fármacos
17.
Inorg Chem ; 55(10): 5037-40, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27111693

RESUMO

The reaction of hydrogen sulfide (H2S) and nitric oxide (NO) is of great physiological significance in human organisms. Our present studies show that Ru(III)(edta) (edta(4-) = ethylenediaminetetraacetate) mediates the S-nitrosylation of bisulfide ion (HS(-)) using NO to form [Ru(III)(edta)(SNO)](2-), the first-ever example of a ruthenium complex containing thionitrite (SNO(-)) in aqueous solution. The reaction product [Ru(III)(edta)(SNO)](2-) was characterized by IR, electron paramagnetic resonance, and electrospray ionization mass spectroscopy. Our studies further show that formation of the putative thionitrous acid coordinated to Ru(III)(edta) does not occur via the reaction of [Ru(III)(edta)NO](-) with HS(-).

18.
Chemistry ; 20(44): 14437-50, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25220399

RESUMO

For the exploration of the intrinsic reactivity of two key active species in the catalytic cycle of horseradish peroxidase (HRP), Compound I (HRP-I) and Compound II (HRP-II), we generated in situ [Fe(IV) O(TMP(+.) )(2-MeIm)](+) and [Fe(IV) O(TMP)(2-MeIm)](0) (TMP=5,10,15,20-tetramesitylporphyrin; 2-MeIm=2-methylimidazole) as biomimetics for HRP-I and HRP-II, respectively. Their catalytic activities in epoxidation, hydrogen abstraction, and heteroatom oxidation reactions were studied in acetonitrile at -15 °C by utilizing rapid-scan UV/Vis spectroscopy. Comparison of the second-order rate constants measured for the direct reactions of the HRP-I and HRP-II mimics with the selected substrates clearly confirmed the outstanding oxidizing capability of the HRP-I mimic, which is significantly higher than that of HRP-II. The experimental study was supported by computational modeling (DFT calculations) of the oxidation mechanism of the selected substrates with the involvement of quartet and doublet HRP-I mimics ((2,4) Cpd I) and the closed-shell triplet spin HRP-II model ((3) Cpd II) as oxidizing species. The significantly lower activation barriers calculated for the oxidation systems involving (2,4) Cpd I than those found for (3) Cpd II are in line with the much higher oxidizing efficiency of the HRP-I mimic proven in the experimental part of the study. In addition, the DFT calculations show that all three reaction types catalyzed by HRP-I occur on the doublet spin surface in an effectively concerted manner, whereas these reactions may proceed in a stepwise mechanism with the HRP-II mimic as oxidant. However, the high desaturation or oxygen rebound barriers during CH bond activation processes by the HRP-II mimic predict a sufficient lifetime for the substrate radical formed through hydrogen abstraction. Thus, the theoretical calculations suggest that the dissociation of the substrate radical may be a more favorable pathway than desaturation or oxygen rebound processes. Importantly, depending on the electronic nature of the oxidizing species, that is, (2,4) Cpd I or (3) Cpd II, an interesting region-selective conversion phenomenon between sulfoxidation and H-atom abstraction was revealed in the course of the oxidation reaction of dimethylsulfide. The combined experimental and theoretical study on the elucidation of the intrinsic reactivity patterns of the HRP-I and HRP-II mimics provides a valuable tool for evaluating the particular role of the HRP active species in biological systems.


Assuntos
Materiais Biomiméticos/química , Peroxidase do Rábano Silvestre/química , Materiais Biomiméticos/metabolismo , Catálise , Peroxidase do Rábano Silvestre/metabolismo , Cinética , Modelos Químicos , Oxirredução , Termodinâmica
19.
Inorg Chem ; 53(6): 2848-57, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24392857

RESUMO

The presented results cover a comparative mechanistic study on the reactivity of compound (Cpd) I and II mimics of a water-soluble iron(III) porphyrin, [meso-tetrakis(2,4,6-trimethyl-3-sulfonatophenyl)porphinato]iron(III), Fe(III)(TMPS). The acidity of the aqueous medium strongly controls the chemical nature and stability of the high-valent iron(IV) oxo species. Reactivity studies were performed at pH 5 and 10, where the Cpd I and II mimics are stabilized as the sole oxidizing species, respectively. The contributions of ΔH(‡) and ΔS(‡) to the free energy of activation (ΔG(‡)) for the oxidation of 4-methoxybenzaldehyde (4-MB-ald), 4-methoxybenzyl alcohol (4-MB-alc), and 1-phenylethanol (1-PhEtOH) by the Cpd I and II mimics were determined. The relatively large contribution of the ΔH(‡) term in comparison to the -TΔS(‡) term to ΔG(‡) for reactions involving the Cpd II mimic indicates that the oxidation of selected substrates by this oxidizing species is clearly an enthalpy-controlled process. In contrast, different results were found for reactions with application of the Cpd I mimic. Depending on the nature of the substrate, the reaction at room temperature can be entropy-controlled, as found for the oxidation of 4-MB-alc, or enthalpy-controlled, as found for 1-PhEtOH. Importantly, for the first time, activation volumes (ΔV(‡)) for the oxidation of selected substrates by both reactive intermediates could be determined. Positive values of ΔV(‡) were found for reactions with the Cpd II mimic and slightly negative ones for reactions with the Cpd II mimic. The results are discussed in the context of the oxidation mechanism conducted by the Cpd I and II mimics.


Assuntos
Mimetismo Molecular , Carbono/química , Hidrogênio/química , Cinética , Pressão , Soluções , Temperatura , Água/química
20.
Chemistry ; 20(8): 2328-43, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24443188

RESUMO

High-valent iron-oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)Fe(III)(OH) porphyrin ([meso-tetrakis(2,4,6-trimethyl-3-sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)Fe(III)(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)Fe(IV)=O(OH) point to the overall associative nature of the process. A pH-dependence study on the formation of (TMPS)Fe(IV)=O(OH) revealed a very high reactivity of OOH(-) toward (TMPS)Fe(III)(OH) in comparison to H2O2. The influence of N-methylimidazole (N-MeIm) ligation on both the formation of iron(IV)-oxo species and their oxidising properties in the reactions with 4-methoxybenzyl alcohol or 4-methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)Fe(III)(H2O)(N-MeIm) is highly reactive toward H2O2 to form the iron(IV)-oxo species, (TMPS)Fe(IV)=O(N-MeIm). The latter species can also be formed in the reaction of (TMPS)Fe(III)(N-MeIm)2 with H2O2 or in the direct reaction of (TMPS)Fe(IV)=O(OH) with N-MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)Fe(IV)=O(OH) and (TMPS)Fe(IV)=O(N-MeIm) do not display a pronounced effect of the N-MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH(-) substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH(-) or N-MeIm) in the trans position to the oxo group in the iron(IV)-oxo species does not significantly affect the activation barriers calculated for C-H dehydrogenation of the selected organic substrates.


Assuntos
Benzaldeídos/química , Peróxido de Hidrogênio/química , Imidazóis/química , Metaloporfirinas/química , Biomimética , Catálise , Compostos Férricos , Ligantes , Ligadura , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA