RESUMO
The respiratory chain alternative enzymes (AEs) NDX and AOX from the tunicate Ciona intestinalis (Ascidiacea) have been xenotopically expressed and characterized in human cells in culture and in the model organisms Drosophila melanogaster and mouse, with the purpose of developing bypass therapies to combat mitochondrial diseases in human patients with defective complexes I and III/IV, respectively. The fact that the genes coding for NDX and AOX have been lost from genomes of evolutionarily successful animal groups, such as vertebrates and insects, led us to investigate if the composition of the respiratory chain of Ciona and other tunicates differs significantly from that of humans and Drosophila, to accommodate the natural presence of AEs. We have failed to identify in tunicate genomes fifteen orthologous genes that code for subunits of the respiratory chain complexes; all of these putatively missing subunits are peripheral to complexes I, III and IV in mammals, and many are important for complex-complex interaction in supercomplexes (SCs), such as NDUFA11, UQCR11 and COX7A. Modeling of all respiratory chain subunit polypeptides of Ciona indicates significant structural divergence that is consistent with the lack of these fifteen clear orthologous subunits. We also provide evidence using Ciona AOX expressed in Drosophila that this AE cannot access the coenzyme Q pool reduced by complex I, but it is readily available to oxidize coenzyme Q molecules reduced by glycerophosphate oxidase, a mitochondrial inner membrane-bound dehydrogenase that is not involved in SCs. Altogether, our results suggest that Ciona AEs might have evolved in a mitochondrial inner membrane environment much different from that of mammals and insects, possibly without SCs; this correlates with the preferential functional interaction between these AEs and non-SC dehydrogenases in heterologous mammalian and insect systems. We discuss the implications of these findings for the applicability of Ciona AEs in human bypass therapies and for our understanding of the evolution of animal respiratory chain.
Assuntos
Ciona intestinalis , Proteínas Mitocondriais , Fosforilação Oxidativa , Animais , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ciona intestinalis/genética , Ciona intestinalis/enzimologia , Humanos , Oxirredutases/genética , Oxirredutases/metabolismo , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética , Drosophila melanogaster/genética , Drosophila melanogaster/enzimologia , Urocordados/genética , Urocordados/enzimologia , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Filogenia , Proteínas de PlantasRESUMO
The usefulness of Drosophila as a model organism for the study of human diseases, behaviors and basic biology is unquestionable. Although practical, Drosophila research lacks popularity in developing countries, possibly due to the misinformed idea that establishing a lab and performing relevant experiments with such tiny insects is difficult and requires expensive, specialized apparatuses. Here, we describe how to build an affordable flylab to quantitatively analyze a myriad of behavioral parameters in D. melanogaster, by 3D-printing many of the necessary pieces of equipment. We provide protocols to build in-house vial racks, courtship arenas, apparatuses for locomotor assays, etc., to be used for general fly maintenance and to perform behavioral experiments using adult flies and larvae. We also provide protocols on how to use more sophisticated systems, such as a high resolution oxygraph, to measure mitochondrial oxygen consumption in larval samples, and show its association with behavioral changes in the larvae upon the xenotopic expression of the mitochondrial alternative oxidase (AOX). AOX increases larval activity and mitochondrial leak respiration, and accelerates development at low temperatures, which is consistent with a thermogenic role for the enzyme. We hope these protocols will inspire researchers, especially from developing countries, to use Drosophila to easily combine behavior and mitochondrial metabolism data, which may lead to information on genes and/or environmental conditions that may also regulate human physiology and disease states.