Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(4): e0283480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37099505

RESUMO

Recent studies link increased ozone (O3) and carbon dioxide (CO2) levels to alteration of plant performance and plant-herbivore interactions, but their interactive effects on plant-pollinator interactions are little understood. Extra floral nectaries (EFNs) are essential organs used by some plants for stimulating defense against herbivory and for the attraction of insect pollinators, e.g., bees. The factors driving the interactions between bees and plants regarding the visitation of bees to EFNs are poorly understood, especially in the face of global change driven by greenhouse gases. Here, we experimentally tested whether elevated levels of O3 and CO2 individually and interactively alter the emission of Volatile Organic Compound (VOC) profiles in the field bean plant (Vicia faba, L., Fabaceae), EFN nectar production and EFN visitation by the European orchard bee (Osmia cornuta, Latreille, Megachilidae). Our results showed that O3 alone had significant negative effects on the blends of VOCs emitted while the treatment with elevated CO2 alone did not differ from the control. Furthermore, as with O3 alone, the mixture of O3 and CO2 also had a significant difference in the VOCs' profile. O3 exposure was also linked to reduced nectar volume and had a negative impact on EFN visitation by bees. Increased CO2 level, on the other hand, had a positive impact on bee visits. Our results add to the knowledge of the interactive effects of O3 and CO2 on plant volatiles emitted by Vicia faba and bee responses. As greenhouse gas levels continue to rise globally, it is important to take these findings into consideration to better prepare for changes in plant-insect interactions.


Assuntos
Ozônio , Vicia faba , Compostos Orgânicos Voláteis , Abelhas , Animais , Néctar de Plantas , Ozônio/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Dióxido de Carbono/farmacologia , Plantas
2.
Nat Hum Behav ; 5(5): 550-556, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33986518

RESUMO

Human activities are degrading ecosystems worldwide, posing existential threats for biodiversity and humankind. Slowing and reversing this degradation will require profound and widespread changes to human behaviour. Behavioural scientists are therefore well placed to contribute intellectual leadership in this area. This Perspective aims to stimulate a marked increase in the amount and breadth of behavioural research addressing this challenge. First, we describe the importance of the biodiversity crisis for human and non-human prosperity and the central role of human behaviour in reversing this decline. Next, we discuss key gaps in our understanding of how to achieve behaviour change for biodiversity conservation and suggest how to identify key behaviour changes and actors capable of improving biodiversity outcomes. Finally, we outline the core components for building a robust evidence base and suggest priority research questions for behavioural scientists to explore in opening a new frontier of behavioural science for the benefit of nature and human wellbeing.


Assuntos
Ciências do Comportamento , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Pesquisa Comportamental , Humanos
3.
PeerJ ; 9: e10473, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33569245

RESUMO

BACKGROUND: The African violets are endangered plant species restricted mainly to the Eastern Arc Mountains biodiversity hotspots in Kenya and Tanzania. These plants grow well in shaded environments with high humidity. Given their restricted geographical range and published evidence of dependance on insect vectors to facilitate sexual reproduction, understanding their pollination biology is vital for their survival. METHODS: We conducted an empirical study using flower visitor observations, pan trapping and bagging experiments to establish the role of flower visitors in the fruit set of a locally endemic and critically endangered species of African violet in Taita Hills, Kenya, Streptocarpus teitensis. RESULTS: The study found that fruit set is increased by 47.8% in S. teitensis when flowers are visited by insects. However, it is important to note the presence of putative autogamy suggesting S. teitensis could have a mixed breeding system involving self-pollination and cross-pollination since bagged flowers produced 26.9% fruit set. CONCLUSIONS: Insects appear to be essential flower visitors necessary for increased fruit set in S. teitensis. However, there is evidence of a mixed breeding system involving putative self-pollination and cross-pollination suggesting that S. teitensis is somewhat shielded from the negative effects of pollinator losses. Consequently, S. teitensis appears to be protected to a degree from the risks such as reproduction failure associated with pollinator losses by the presence of a safety net in putative self-pollination.

4.
J Econ Entomol ; 112(2): 525-533, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30566679

RESUMO

Honey bees (Apis mellifera L.) are key pollinators of agricultural crops. However, approximately 30% of managed colonies die each winter in the United States. There has been great interest in breeding for 'locally adapted stocks' which survive winter conditions in a particular region. Here, we evaluate the impact of geographic origin of stock on colony weight, population size, and overwintering survival. Comparing four different U.S. honey bee stocks (two bred in southern and two bred in northern regions) under standard beekeeping practices in three different apiary locations in central Pennsylvania, we examined possible adaptation of these stocks to temperate conditions. We confirmed the genotypic difference among the stocks from different geographic origins via microsatellite analysis. We found that stock or region of origin was not correlated with weight, population size, or overwintering success. However, overwintering success was influenced by the weight and population size the colonies reached prior to winter where higher colony weight is a strong predictor of overwintering survival. Although the number of locations used in this study was limited, the difference in average colony sizes from different locations may be attributable to the abundance and diversity of floral resources near the honey bee colonies. Our results suggest that 1) honey bees may use similar strategies to cope with environmental conditions in both southern and northern regions, 2) colonies must reach a population size threshold to survive adverse conditions (an example of the Allee effect), and 3) landscape nutrition is a key component to colony survival.


Assuntos
Himenópteros , Animais , Criação de Abelhas , Abelhas , New England , Pennsylvania , Estações do Ano
5.
Glob Chang Biol ; 23(11): 4946-4957, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28488295

RESUMO

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.


Assuntos
Agricultura/métodos , Artrópodes , Biodiversidade , Ecossistema , Animais
6.
Ecol Lett ; 16(5): 584-99, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23489285

RESUMO

Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.


Assuntos
Agricultura , Abelhas/fisiologia , Ecossistema , Modelos Teóricos , Polinização , Animais , Clima , Produtos Agrícolas , Flores , Densidade Demográfica
7.
Science ; 339(6127): 1608-11, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23449997

RESUMO

The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Insetos/fisiologia , Polinização , Animais , Abelhas/fisiologia , Flores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA