Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Oral Biosci ; 65(1): 47-54, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693475

RESUMO

OBJECTIVES: Junctional epithelium (JE) connects the tooth surface and gingival epithelium and adheres directly to the tooth enamel. JE plays an important role as a barrier preventing the invasion of exogenous bacteria and substances. However, the cellular characteristics of this epithelium have not been adequately described, because no useful in vitro experimental model exists for JE. METHODS: We generated a novel JE cell line, mHAT-JE01, using naturally immortalized dental epithelium derived from incisor labial cervical cells and by selecting cells that adhered to apatite. mHAT-JE01 was characterized by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction and compared with the gingival epithelial cell line, mOE-PE01. RESULTS: The mHAT-JE01 cells had a higher capacity for producing JE-specific markers than oral mucous epithelial cells. In addition, the presence of lipopolysaccharides from Porphyromonas gingivalis downregulated the expression of JE protein markers in mHAT-JE01 cells. CONCLUSIONS: This cell line is stable and presents the opportunity to characterize JE efficiently, which is essential for the prevention and treatment of periodontal disease.


Assuntos
Células Epiteliais , Incisivo , Incisivo/química , Incisivo/metabolismo , Células Epiteliais/química , Células Epiteliais/metabolismo , Epitélio/química , Epitélio/metabolismo , Proteínas/análise , Proteínas/metabolismo , Linhagem Celular
2.
J Periodontal Res ; 58(1): 184-194, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36517910

RESUMO

BACKGROUND AND OBJECTIVES: Hertwig's epithelial root sheath (HERS) plays a role in root dentin formation. It produces the epithelial rests of Malassez (ERM) for the induction of periodontal tissue development during root formation. Although ERM is thought to be caused by epithelial-mesenchymal transition (EMT), the mechanism by which HERS is maintained as epithelium is unknown. Here, we aimed to elucidate the molecular mechanisms regulating the relationship between HERS maintenance and ERM development. METHODS: To understand the relationship between HERS and ERM development during root formation, we observed the developing molar root using cytokeratin14 (CK14) Cre/tdTomato mice via stereomicroscopy. The relationship between semaphorin and transforming growth factor (TGF) signaling in the maintenance of HERS and ERM development was examined using CK14cre/R26-tdTomato mice and a HERS cell line. RESULTS: tdTomato-positive cells were observed on HERS and the migrating cells from HERS. The migrating cells showed reduced E-cadherin expression. In contrast, HERS cells expressed semaphorin receptors and active RhoA. Semaphorin signaling was associated with RhoA activation and cell-cell adhesion, while TGF-ß induced decreased E-cadherin and active RhoA expression, and consequently enhanced cell migration. CONCLUSION: HERS induces root formation by controlling epithelial maintenance and EMT through the opposing effects of semaphorin and TGF-ß signaling.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta , Feminino , Camundongos , Animais , Fator de Crescimento Transformador beta/farmacologia , Células Epiteliais , Raiz Dentária/fisiologia , Caderinas/metabolismo
3.
Front Physiol ; 13: 1062042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523561

RESUMO

Maturation stage ameloblasts (M-ABs) are responsible for terminal enamel mineralization in teeth and undergo characteristic cyclic changes in both morphology and function between ruffle-ended ameloblasts (RA) and smooth-ended ameloblasts (SA). Energy metabolism has recently emerged as a potential regulator of cell differentiation and fate decisions; however, its implication in M-ABs remains unclear. To elucidate the relationship between M-ABs and energy metabolism, we examined the expression pattern of energy metabolic enzymes in M-ABs of mouse incisors. Further, using the HAT7 cell line with M-AB characteristics, we designed experiments to induce an energy metabolic shift by changes in oxygen concentration. We revealed that RA preferentially utilizes oxidative phosphorylation, whereas SA depends on glycolysis-dominant energy metabolism in mouse incisors. In HAT7 cells, hypoxia induced an energy metabolic shift toward a more glycolytic-dominant state, and the energy metabolic shift reduced alkaline phosphatase (ALP) activity and calcium transport and deposition with a change in calcium-related gene expression, implying a phenotype shift from RA to SA. Taken together, these results indicate that the energy metabolic state is an important determinant of the RA/SA phenotype in M-ABs. This study sheds light on the biological significance of energy metabolism in governing M-ABs, providing a novel molecular basis for understanding enamel mineralization and elucidating the pathogenesis of enamel hypomineralization.

4.
Cell Prolif ; 55(11): e13305, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35794842

RESUMO

OBJECTIVES: Ameloblastoma (AM) has been known as a benign but locally invasive tumour with high recurrence rates. Invasive behaviour of the AM results in destruction of the adjacent jawbone and the non-detectable remnants during surgery, interrupting the complete elimination of cancer cells. METHODS: To explore novel targets for the tumour cell invasion, a transcriptomic analysis between AM and odontogenic keratocyst were performed through next-generation sequencing in detail. RESULTS: Enrichment of CACNA1C gene (encoding Cav1.2) in AM, a subunit of the L-type voltage-gated calcium channel (VGCC) was observed for the first time. The expression and channel activity of Cav1.2 was confirmed by immunostaining and calcium imaging in the patient samples or primary cells. Verapamil, L-type VGCC blocker revealed suppression of the Ca2+ -induced cell aggregation and collective invasion of AM cells in vitro. Furthermore, the effect of verapamil in suppressing AM invasion into the adjacent bone was confirmed through orthotopic xenograft model specifically. CONCLUSION: Taken together, Cav1.2 maybe considered to be a therapeutic candidate to decrease the collective migration and invasion of AM.


Assuntos
Ameloblastoma , Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo L , Humanos , Ameloblastoma/tratamento farmacológico , Ameloblastoma/genética , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Verapamil/farmacologia , Animais
5.
Sci Rep ; 12(1): 9149, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701484

RESUMO

Tooth development is governed largely by epithelial-mesenchymal interactions and is mediated by numerous signaling pathways. This type of morphogenetic processes has been explained by reaction-diffusion systems, especially in the framework of a Turing model. Here we focus on morphological and developmental differences between upper and lower molars in mice by modeling 2D pattern formation in a Turing system. Stripe vs. spot patterns are the primary types of variation in a Turing model. We show that the complexity of the cusp cross-sections can distinguish between stripe vs. spot patterns, and mice have stripe-like upper and spot-like lower molar morphologies. Additionally, our computational modeling that incorporates empirical data on tooth germ growth traces the order of cusp formation and relative position of the cusps in upper and lower molars in mice. We further propose a hypothetical framework of developmental mechanism that could help us understand the evolution of the highly variable nature of mammalian molars associated with the acquisition of the hypocone and the increase of lophedness.


Assuntos
Dente Molar , Odontogênese , Animais , Mamíferos , Camundongos , Dente Molar/anatomia & histologia , Morfogênese , Transdução de Sinais , Germe de Dente
6.
J Oral Biosci ; 64(1): 85-92, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074512

RESUMO

OBJECTIVES: Lysophosphatidic acid (LPA) is a potent bioactive phospholipid that exerts various functions upon binding to six known G protein-coupled receptors (LPA1-6); however; its role in a tooth remains unclear. This study aimed to explore the impact of the LPA/LPA receptor 6 (LPA6)/RhoA signaling axis on maturation stage ameloblasts (M-ABs), which are responsible for enamel mineralization. METHODS: The expression of LPA6 and LPA-producing synthetic enzymes during ameloblast differentiation was explored through immunobiological analysis of mouse incisors and molars. To elucidate the role of LPA6 in ameloblasts, incisors of LPA6 KO mice were analyzed. In vitro experiments using ameloblast cell lines were performed to validate the function of LPA-LPA6-RhoA signaling in ameloblasts. RESULTS: LPA6 and LPA-producing enzymes were strongly expressed in M-ABs. In LPA6 knockout mice, M-ABs exhibited abnormal morphology with the loss of cell polarity, and an abnormal enamel epithelium containing cyst-like structures was formed. Moreover, the expression of E-cadherin and zonula occludens-1 (ZO-1) significantly decreased in M-ABs. In vitro experiments demonstrated that LPA upregulated the expression of E-cadherin, ZO-1, and filamentous actin (F-actin) at the cellular membrane, whereas LPA6 knockdown decreased their expression and changed cell morphology. Furthermore, we showed that RhoA signaling mediates LPA-LPA6-induced junctional complexes. CONCLUSIONS: This study demonstrated that LPA-LPA6-RhoA signaling is essential for establishing proper cell morphology and polarity, via cell-cell junction and actin cytoskeleton expression and stability, of M-ABs. These results highlight the biological significance of bioactive lipids in a tooth, providing a novel molecular regulatory mechanism of ameloblasts.


Assuntos
Ameloblastos , Lisofosfolipídeos , Receptores de Ácidos Lisofosfatídicos , Proteína rhoA de Ligação ao GTP , Ameloblastos/metabolismo , Amelogênese , Animais , Caderinas/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Receptores de Ácidos Lisofosfatídicos/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Cancer Sci ; 112(5): 1963-1974, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33544933

RESUMO

The emergence of acquired resistance is a major concern associated with molecularly targeted kinase inhibitors. The C797S mutation in the epidermal growth factor receptor (EGFR) confers resistance to osimertinib, a third-generation EGFR-tyrosine kinase inhibitor (EGFR-TKI). We report that the derivatization of the marine alkaloid topoisomerase inhibitor lamellarin N provides a structurally new class of EGFR-TKIs. One of these, lamellarin 14, is effective against the C797S mutant EGFR. Bioinformatic analyses revealed that the derivatization transformed the topoisomerase inhibitor-like biological activity of lamellarin N into kinase inhibitor-like activity. Ba/F3 and PC-9 cells expressing the EGFR in-frame deletion within exon 19 (del ex19)/T790M/C797S triple-mutant were sensitive to lamellarin 14 in a dose range similar to the effective dose for cells expressing EGFR del ex19 or del ex19/T790M. Lamellarin 14 decreased the autophosphorylation of EGFR and the downstream signaling in the triple-mutant EGFR PC-9 cells. Furthermore, intraperitoneal administration of 10 mg/kg lamellarin 14 for 17 days suppressed tumor growth of the triple-mutant EGFR PC-9 cells in a mouse xenograft model using BALB/c nu/nu mice. Thus, lamellarin 14 serves as a novel structural backbone for an EGFR-TKI that prevents the development of cross-resistance against known drugs in this class.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas/farmacologia , Compostos de Anilina/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fluoracetatos , Expressão Gênica , Compostos Heterocíclicos de 4 ou mais Anéis/química , Xenoenxertos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Moluscos/química , Mutagênese Sítio-Dirigida , Mutação , Inibidores de Proteínas Quinases/química
8.
PLoS One ; 16(1): e0245235, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33503058

RESUMO

The use of agents that target both glia and neurons may represent a new strategy for the treatment of ageing disorders. Here, we confirmed the presence of the novel cyclic peptide Naturido that originates from a medicinal fungus (Isaria japonica) grown on domestic silkworm (Bombyx mori). We found that Naturido significantly enhanced astrocyte proliferation and activated the single copy gene encoding the neuropeptide VGF and the neuron-derived NGF gene. The addition of the peptide to the culture medium of primary hippocampal neurons increased dendrite length, dendrite number and axon length. Furthermore, the addition of the peptide to primary microglial cultures shifted CGA-activated microglia towards anti-inflammatory and neuroprotective phenotypes. These findings of in vitro glia-neuron interactions led us to evaluate the effects of oral administration of the peptide on brain function and hair ageing in senescence-accelerated mice (SAMP8). In vivo analyses revealed that spatial learning ability and hair quality were improved in Naturido-treated mice compared with untreated mice, to the same level observed in the normal ageing control (SAMR1). These data suggest that Naturido may be a promising glia-neuron modulator for the treatment of not only senescence, but also Alzheimer's disease and other neurodegenerative diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Axônios/efeitos dos fármacos , Axônios/fisiologia , Proliferação de Células/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/fisiologia , Feminino , Humanos , Hypocreales/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Microglia/citologia , Microglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Development ; 148(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33472844

RESUMO

Stem cells are maintained in specific niches that strictly regulate their proliferation and differentiation for proper tissue regeneration and renewal. Molecular oxygen (O2) is an important component of the niche microenvironment, but little is known about how O2 governs epithelial stem cell (ESC) behavior. Here, we demonstrate that O2 plays a crucial role in regulating the proliferation of ESCs using the continuously growing mouse incisors. We have revealed that slow-cycling cells in the niche are maintained under relatively hypoxic conditions compared with actively proliferating cells, based on the blood vessel distribution and metabolic status. Mechanistically, we have demonstrated that, during hypoxia, HIF1α upregulation activates the RhoA signal, thereby promoting cortical actomyosin and stabilizing the adherens junction complex, including merlin. This leads to the cytoplasmic retention of YAP/TAZ to attenuate cell proliferation. These results shed light on the biological significance of blood-vessel geometry and the signaling mechanism through microenvironmental O2 to orchestrate ESC behavior, providing a novel molecular basis for the microenvironmental O2-mediated stem cell regulation during tissue development and renewal.


Assuntos
Actomiosina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Epitélio/metabolismo , Incisivo/metabolismo , Oxigênio/metabolismo , Células-Tronco/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Proliferação de Células , Imunofluorescência , Hipóxia , Imuno-Histoquímica , Transdução de Sinais , Células-Tronco/citologia , Proteínas de Sinalização YAP
10.
Cell Death Differ ; 28(5): 1441-1454, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33219327

RESUMO

Spermatogenesis is an important cellular differentiation process that produces the male gametes and remains active throughout the individual's lifespan. Sertoli cell-only syndrome (SCO) refers to the dysfunction of the male reproductive system, including infertility. Accurate self-renewal of spermatogonial stem cells (SSCs) is essential to prevent SCO syndrome. This study investigated the role of microtubule-associated serine/threonine kinase family member 4 (MAST4) in spermatogenesis in mice. MAST4 was localized in Sertoli cells before puberty, providing a somatic niche for spermatogenesis in mice and MAST4 expression shifted to Leydig cells and spermatids throughout puberty. Mast4 knockout (KO) testes were reduced in size compared to wild-type testes, and germ cell depletion associated with an increase in apoptosis and subsequent loss of tubular structure were similar to the SCO phenotype. In addition, MAST4 phosphorylated the Ets-related molecule (ERM), specifically the serine 367 residue. The phosphorylation of ERM ultimately controls the transcription of ERM target genes related to SSC self-renewal. The expression of spermatogenesis-associated proteins was significantly decreased whereas Sertoli cell markers were increased in Mast4 KO testes, which was well-founded by RNA-sequencing analysis. Therefore, MAST4 is associated with the fibroblast growth factor 2 (FGF2)/ERM pathway and this association helps us explore the capacity of SSCs to maintain a vertebrate stem cell niche.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espermatogônias/fisiologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout
11.
Methods Mol Biol ; 1922: 3-11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838559

RESUMO

Mouse incisors are regenerative tissues, which grow continuously throughout life and are good model for the study of epithelial stem cells. The study of dental epithelial stem cells allows investigation of a variety of basic biological processes in the context of the stem cells. The ability to analyze dental epithelial stem cells in vitro has emerged as a powerful tool to understand how teeth are constructed and the signaling pathways that regulate ameloblast developmental processes. Here, we describe in detail our protocols for the culture of dental epithelial stem cells and the production of the cell lines. These techniques allow us to reproduce the differentiation process of ameloblasts and estimate the effect of specific genes ex vivo, as well as are a tool for studies on the mechanisms of normal and abnormal amelogenesis. They may also be applied to studies on other aspects of developmental biology and regenerative medicine using stem cells.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Células Epiteliais , Incisivo/citologia , Microdissecção , Células-Tronco , Ameloblastos/fisiologia , Animais , Diferenciação Celular , Linhagem Celular , Camundongos
12.
Dev Dyn ; 248(1): 129-139, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30106495

RESUMO

BACKGROUND: A biotooth is defined as a complete living tooth, made in laboratory cultures from a spontaneous interplay between epithelial and mesenchymal cell-based frontal systems. A good solution to these problems is to use induced pluripotent stem cells (iPSCs). However, no one has yet formulated culture conditions that effectively differentiate iPSCs into dental epithelial and dental mesenchymal cells phenotypes analogous to those present in tooth development. RESULTS: Here, we tried to induce differentiation methods for dental epithelial cells (DEC) and dental mesenchymal cells from iPSCs. For the DEC differentiation, the conditional media of SF2 DEC was adjusted to embryoid body. Moreover, we now report on a new cultivation protocol, supported by transwell membrane cell culture that make it possible to differentiate iPSCs into dental epithelial and mesenchymal cells with abilities to initiate the first stages in de novo tooth formation. CONCLUSIONS: Implementation of technical modifications to the protocol that maximize the number and rate of iPSC differentiation, into mesenchymal and epithelial cell layers, will be the next step toward growing an anatomically accurate biomimetic tooth organ. Developmental Dynamics 248:129-139, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Dente/citologia , Animais , Biomimética/métodos , Biomimética/tendências , Diferenciação Celular , Células Epiteliais/fisiologia , Humanos , Mesoderma/citologia , Mesoderma/fisiologia , Dente/crescimento & desenvolvimento
13.
Biochem Biophys Res Commun ; 497(3): 924-929, 2018 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-29253570

RESUMO

Tooth and bone are major tissues involved in physiological calcification in the body, and they use similar molecular pathways for development, homeostasis, and regeneration. Harmine (HMN) is a natural small compound that stimulates osteoblast differentiation in vitro and in vivo. Here we examined the biological effect of HMN on the postnatal development of molar tooth roots and periodontal tissues. HMN supported the formation of tooth roots and periodontal tissues in developing tooth germs. In tooth germ organ culture, HMN promoted the elongation of Hertwig's epithelial root sheath (HERS) and stimulated cell proliferation in HERS and dental follicle-derived tissues, including dental papillae and dental follicles. HMN stimulated cell proliferation and cell movement of HERS-derived cells without mesenchymal cells in vitro and directly induced the phosphorylation of SMAD1/5/8 protein in HERS-derived cells. Our results indicated that HMN was the first natural small compound to stimulate postnatal development of tooth germs.


Assuntos
Harmina/farmacologia , Dente Molar/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Proteína Smad8/metabolismo , Raiz Dentária/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Dente Molar/crescimento & desenvolvimento , Dente Molar/metabolismo , Proteína Smad1/análise , Proteína Smad5/análise , Proteína Smad8/análise , Raiz Dentária/crescimento & desenvolvimento , Raiz Dentária/metabolismo
14.
Biomed Res ; 38(1): 61-69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239033

RESUMO

In tooth root development, periodontal ligament (PDL) and cementum are formed by the coordination with the fragmentation of Hertwig's epithelial root sheath (HERS) and the differentiation of dental follicle mesenchymal cells. However, the function of the dental epithelial cells after HERS fragmentation in the PDL is not fully understood. Here, we found that TGF-ß regulated HERS fragmentation via epithelial-mesenchymal transition (EMT), and the fragmented epithelial cells differentiated into PDL fibroblastic cells with expressing of PDL extracellular matrix (ECM). In the histochemical analysis, TGF-ß was expressed in odontoblast layer adjacent of HERS during root development. Periostin expression was detected around fragmented epithelial cells on the root surface, but not in HERS. In the experiment using an established mouse HERS cell line (HERS01a), TGF-ß1 treatment decreased E-cadherin and relatively increased N-cadherin expression. TGF-ß1 treatment in HERS01a induced further expression of important ECM proteins for acellular cementum and PDL development such as fibronectin and periostin. Taken together, activation of TGF-ßsignaling induces HERS fragmentation through EMT and the fragmented HERS cells contribute to formation of PDL and acellular cementum through periostin and fibronectin expression.


Assuntos
Células Epiteliais/citologia , Transição Epitelial-Mesenquimal/fisiologia , Ligamento Periodontal/citologia , Raiz Dentária/citologia , Fator de Crescimento Transformador beta1/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cemento Dentário/citologia , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Camundongos , Odontoblastos/citologia , Odontoblastos/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/genética
15.
J Bone Miner Res ; 31(11): 1943-1954, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27218883

RESUMO

During tooth development, oral epithelial cells differentiate into ameloblasts in order to form the most mineralized tissue in the vertebrate body: enamel. During this process, ameloblasts directionally secrete enamel matrix proteins and morphologically change from low columnar cells to polarized tall columnar cells, both of which are essential for the proper formation of enamel. In this study, we elucidated the molecular mechanism that integrates ameloblast function and morphology. Immunohistochemistry revealed that the restricted expression of semaphorin 4D (Sema4D) and RhoA activation status are closely associated with ameloblast differentiation in mouse incisors. In addition, in vitro gain-of-function and loss-of-function experiments demonstrated that Sema4D acts upstream of RhoA to regulate cell polarity and amelogenin expression via the Plexin B1/Leukemia-associated RhoGEF (LARG) complex during ameloblast differentiation. Experiments in transgenic mice demonstrated that expression of a dominant-negative form of RhoA in dental epithelium hindered ameloblast differentiation and subsequent enamel formation, as well as perturbing the establishment of polarized cell morphology and vectorial amelogenin expression. Finally, we showed that spatially restricted Akt mediates between Sema4D-RhoA signaling and these downstream cellular events. Collectively, our results reveal a novel signaling network, the Sema4D-RhoA-Akt signal cascade, that coordinates cellular function and morphology and highlights the importance of specific spatiotemporally restricted components of a signaling pathway in the regulation of ameloblast differentiation. © 2016 American Society for Bone and Mineral Research.


Assuntos
Ameloblastos/citologia , Antígenos CD/metabolismo , Diferenciação Celular , Polaridade Celular , Proteínas do Esmalte Dentário/metabolismo , Esmalte Dentário/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Semaforinas/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Ameloblastos/metabolismo , Amelogenina/metabolismo , Animais , Proliferação de Células , Humanos , Camundongos , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Receptores de Superfície Celular/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Dente/metabolismo
16.
Cell Tissue Res ; 365(1): 77-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26846112

RESUMO

The transcription factor Sox2 is a stem cell marker that dictates cell lineage. It has been shown to mark the epithelial stem cells of the continuously growing mouse incisors. Sox2 also interferes with Wnt signaling by binding to ß-catenin, a central mediator of the Wnt pathway. We show that these functions of Sox2 are essential for mouse molar development. Sox2 has previously been shown to play a role in the formation of new teeth from the existing dental epithelium. To assess Sox2 function related to cell migration within a tooth, we monitored cell movement by using a DiI system and observed that DiI moves from molar 1 to molar 2 during tooth development. However, upon temporal knockdown of Sox2, DiI remains in the molar 1 region. This study also provides novel insights into the role of Sox2 and the important validation of Sox2 as a potent target in Wnt signaling during tooth development. Our data reveal that the degradation of Wnt signaling caused by the knockdown of Sox2 results in a lack of cell migration during tooth development.


Assuntos
Fatores de Transcrição SOXB1/metabolismo , Dente/embriologia , Dente/metabolismo , Via de Sinalização Wnt , Animais , Movimento Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Camundongos , RNA Interferente Pequeno/metabolismo , Fatores de Tempo
17.
Mech Dev ; 139: 18-30, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26809144

RESUMO

Cells alter their energy metabolism depending on the stage of differentiation or various environments. In the ameloblast differentiation of continuous growing mouse incisors, we found temporary glycogen storage in preameloblasts before the start of enamel matrix secretion and investigated the relationship between enamel matrix secretion and glycogen metabolism. Immunohistochemistry showed that in the transitional stage from preameloblasts to secretory ameloblasts, the glycogen synthase changed from the inactive form to the active form, the expression of glycogen phosphorylase increased, and further, the levels of IGF-1, IGF-1 receptor and activated Akt increased. These results suggested that the activation of Akt signaling via IGF is linked to the onset of both glycogen metabolism and enamel matrix deposition. In the experiments using organ culture and ameloblast cell line, the activation of Akt signaling by IGF-1 stimulated glycogen metabolism through the up-regulation of Glut-1,-4 and Gsk-3ß and the dephosphorylation of glycogen synthase. Subsequently, they resulted in increased enamel matrix secretion. In contrast, some inhibitors of Akt signals and glycogen synthesis/degradation down-regulated enamel matrix secretion. Taking these findings together, glycogen metabolism via Akt signaling is an essential system for the secretion of enamel matrix in ameloblast differentiation.


Assuntos
Amelogênese , Esmalte Dentário/metabolismo , Glicogênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Esmalte Dentário/crescimento & desenvolvimento , Incisivo/crescimento & desenvolvimento , Incisivo/metabolismo , Incisivo/ultraestrutura , Camundongos Endogâmicos ICR , Transdução de Sinais , Somatomedinas/fisiologia , Técnicas de Cultura de Tecidos
18.
Jpn Dent Sci Rev ; 52(2): 32-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-28408954

RESUMO

During tooth development, ameloblasts differentiate from inner enamel epithelial cells to enamel-forming cells by modulating the signal pathways mediating epithelial-mesenchymal interaction and a cell-autonomous gene network. The differentiation process of epithelial cells is characterized by marked changes in their morphology and polarity, accompanied by dynamic cytoskeletal reorganization and changes in cell-cell and cell-matrix adhesion over time. Functional ameloblasts are tall, columnar, polarized cells that synthesize and secrete enamel-specific proteins. After deposition of the full thickness of enamel matrix, ameloblasts become smaller and regulate enamel maturation. Recent significant advances in the fields of molecular biology and genetics have improved our understanding of the regulatory mechanism of the ameloblast cell life cycle, mediated by the Rho family of small GTPases. They act as intracellular molecular switch that transduce signals from extracellular stimuli to the actin cytoskeleton and the nucleus. In our review, we summarize studies that provide current evidence for Rho GTPases and their involvement in ameloblast differentiation. In addition to the Rho GTPases themselves, their downstream effectors and upstream regulators have also been implicated in ameloblast differentiation.

19.
Cell Tissue Res ; 362(3): 633-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26246398

RESUMO

Dental stem cells are located at the proximal ends of rodent incisors. These stem cells reside in the dental epithelial stem cell niche, termed the apical bud. We focused on identifying critical features of a chemotactic signal in the niche. Here, we report that CXCR4/CXCL12 signaling impacts enamel progenitor cell proliferation and motility in dental stem cell niche cells. We report cells in the apical bud express CXCR4 mRNA at high levels while expression is restricted in the basal epithelium (BE) and transit-amplifying (TA) cell regions. Furthermore, the CXCL12 ligand is present in mesenchymal cells adjacent to the apical bud. We then performed gain- and loss-of-function analyses to better elucidate the role of CXCR4 and CXCL12. CXCR4-deficient mice contain epithelial cell aggregates, while cell proliferation in mutant incisors was also significantly reduced. We demonstrate in vitro that dental epithelial cells migrate toward sources of CXCL12, whereas knocking down CXCR4 impaired motility and resulted in formation of dense cell colonies. These results suggest that CXCR4 expression may be critical for activation of enamel progenitor cell division and that CXCR4/CXCL12 signaling may control movement of epithelial progenitors from the dental stem cell niche.


Assuntos
Movimento Celular , Quimiocina CXCL12/metabolismo , Esmalte Dentário/citologia , Receptores CXCR4/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Células-Tronco/citologia , Animais , Agregação Celular , Linhagem Celular , Proliferação de Células , Forma Celular , Quimiocina CXCL12/deficiência , Quimiocina CXCL12/genética , Células Epiteliais , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Incisivo/citologia , Incisivo/embriologia , Camundongos Knockout , Mutação , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/deficiência , Receptores CXCR4/genética , Células-Tronco/metabolismo
20.
Exp Cell Res ; 325(2): 78-82, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24560742

RESUMO

Teeth are composed of two domains, the enamel-covered crown and cementum-covered root. The mechanism for determining the transition from crown to root is important for understanding root anomaly diseases. Hertwig׳s epithelial root sheath (HERS) is derived from the dental epithelium and is known to drive the growth of root dentin and periodontal tissue. Some clinical cases of hypoplastic tooth root are caused by the cessation of HERS development. Understanding the mechanisms of HERS development will contribute to the study of the disease and dental regenerative medicine. However, the developmental biology of tooth root formation has not been fully studied, particularly regarding HERS formation. Here, we describe the mechanisms of HERS formation on the basis of analysis of cell dynamics using imaging and summarize how the growth factor and its receptor regulate cell behavior of the dental epithelium.


Assuntos
Fenômenos Fisiológicos Celulares , Epitélio/crescimento & desenvolvimento , Raiz Dentária/crescimento & desenvolvimento , Animais , Epitélio/metabolismo , Humanos , Raiz Dentária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA