RESUMO
The KEAP1-NRF2 system induces the expression of antioxidant genes in response to various types of oxidative stress. Some cancer cells activate this system, which increases their malignancy through genetic mutations. We performed a retrospective cohort study using the C-CAT database, which contains the gene-panel sequence data from 60,056 cases of diagnosed solid tumors. We analyzed somatic mutations in NRF2 and KEAP1 genes and their associations with clinical outcomes. Variants in the NRF2 gene were clustered in exon 2, which encodes the DLG and ETGE motifs essential for KEAP1 interaction. The NRF2 variants were frequently observed in esophageal and lung squamous cell carcinoma with frequencies of 35.9% and 19.6%, respectively. Among these mutations, the NRF2 variants in the ETGE motif were indicators of a worse prognosis. KEAP1 variants were found in 2.5% of all cases. The variants were frequent in lung cancer and showed a worse prognosis in lung and other types of adenocarcinomas. We then conducted gene expression analysis using TCGA data. While cancers with DLG and ETGE variants were similar in terms of gene expression profiles, there were significant differences between cancers with KEAP1 and NRF2 variants. Our results indicate that genetic alteration of the KEAP1-NRF2 pathway is a major factor in patient prognosis for each cancer type and its genetic variant. Variants in NRF2 and KEAP1 genes can characterize the biological basis of each cancer type and are involved in carcinogenesis, resistance to therapy, and other biological differences.
RESUMO
BACKGROUND: The purpose of this study was to report the basic profile of the Miyagi Prefecture part of a repeated center-based survey during the second period of the Tohoku Medical Megabank Community-Based Cohort Study (TMM CommCohort Study), as well as the participants' characteristics based on their participation type in the baseline survey. METHODS: The second period survey, conducted from June 2017 to March 2021, included participants of the TMM CommCohort Study (May 2013 to March 2016). In addition to the questionnaire, blood, urine, and physiological function tests were performed during the second period survey. There were three main ways of participation in the baseline survey: Type 1, Type 1 additional, or Type 2 survey. The second period survey was conducted in the same manner as the Type 2 survey, which was based on the community support center (CSC). RESULTS: In Miyagi Prefecture, 29,383 (57.7%) of 50,967 participants participated in the second period survey. The participation rate among individuals who had visited the CSC was approximately 80%. Although some factors differed depending on the participation type in the baseline survey, the second period survey respondents in the Type 1 and Type 2 survey groups at baseline had similar traits. CONCLUSION: The second period survey of the TMM CommCohort Study provided detailed follow-up information. Following up on the health conditions of the participants will clarify the long-term effects of disasters and contribute to personalized prevention.
Assuntos
Estudos de Coortes , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Japão , Inquéritos e QuestionáriosRESUMO
Whole blood transcriptome analysis is a valuable approachin medical research, primarily due to the ease of sample collection and the richness of the information obtained. Since the expression profile of individual genes in the analysis is influenced by medical traits and demographic attributes such as age and gender, there has been a growing demand for a comprehensive database for blood transcriptome analysis. Here, we performed whole blood RNA sequencing (RNA-seq) analysis on 576 participants stratified by age (20-30s and 60-70s) and gender from cohorts of the Tohoku Medical Megabank (TMM). A part of female segment included pregnant women. We did not exclude the globin gene family in our RNA-seq study, which enabled us to identify instances of hereditary persistence of fetal hemoglobin based on the HBG1 and HBG2 expression information. Comparing stratified populations allowed us to identify groups of genes associated with age-related changes and gender differences. We also found that the immune response status, particularly measured by neutrophil-to-lymphocyte ratio (NLR), strongly influences the diversity of individual gene expression profiles in whole blood transcriptome analysis. This stratification has resulted in a data set that will be highly beneficial for future whole blood transcriptome analysis in the Japanese population.
Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos , Japão , Idoso , Adulto Jovem , Fatores Etários , Fatores Sexuais , Povo Asiático/genética , População do Leste AsiáticoRESUMO
Modern medicine is increasingly focused on personalized medicine, and multi-omics data is crucial in understanding biological phenomena and disease mechanisms. Each ethnic group has its unique genetic background with specific genomic variations influencing disease risk and drug response. Therefore, multi-omics data from specific ethnic populations are essential for the effective implementation of personalized medicine. Various prospective cohort studies, such as the UK Biobank, All of Us and Lifelines, have been conducted worldwide. The Tohoku Medical Megabank project was initiated after the Great East Japan Earthquake in 2011. It collects biological specimens and conducts genome and omics analyses to build a basis for personalized medicine. Summary statistical data from these analyses are available in the jMorp web database (https://jmorp.megabank.tohoku.ac.jp), which provides a multidimensional approach to the diversity of the Japanese population. jMorp was launched in 2015 as a public database for plasma metabolome and proteome analyses and has been continuously updated. The current update will significantly expand the scale of the data (metabolome, genome, transcriptome, and metagenome). In addition, the user interface and backend server implementations were rewritten to improve the connectivity between the items stored in jMorp. This paper provides an overview of the new version of the jMorp.
Assuntos
Bases de Dados Genéticas , Multiômica , População , Medicina de Precisão , Humanos , Genômica/métodos , Japão , Estudos Prospectivos , População/genéticaRESUMO
BACKGROUND: In the TSUBAKI study, bardoxolone methyl significantly increased measured and estimated glomerular filtration rates (GFR) in patients with multiple forms of chronic kidney disease (CKD), including Japanese patients with type 2 diabetes and stage 3-4 CKD. Since bardoxolone methyl targets the nuclear factor erythroid 2-related factor 2 pathway, this exploratory analysis of the TSUBAKI study investigated the impact of the regulatory single nucleotide polymorphism, rs6721961, on the effects of bardoxolone methyl. METHODS: Japanese patients aged 20-79 years with type 2 diabetes and stage 3-4 CKD were randomized to bardoxolone methyl 5-15 mg/day (titrated as tolerated) or placebo for 16 weeks. Genotype frequency, clinical characteristics, renal function, and adverse events were primarily assessed. RESULTS: Of 104 patients (bardoxolone methyl n = 55, placebo n = 49); 57% were genotype C/C, 32% C/A and 12% A/A. The frequency of the A/A genotype was higher among patients with diabetic kidney disease than in the general Japanese population (~ 5%). Measured and estimated GFRs increased from baseline in all genotypes receiving bardoxolone methyl. There were no significant differences between genotypes for safety parameters, including blood pressure, bodyweight, and levels of B-type natriuretic peptide, or in the type and frequency of adverse events, suggesting that the efficacy and safety of bardoxolone methyl are unaffected by the rs6721961 polymorphism-617 (CâA) genotype. CONCLUSIONS: Our approach of combining genome analysis with clinical trials for an investigational drug provides important and useful clues for exploring the efficacy and safety of the drug. TRIAL REGISTRATION: ClinicalTrials.gov; NCT02316821.
Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Ácido Oleanólico/análogos & derivados , Insuficiência Renal Crônica , Humanos , Fator 2 Relacionado a NF-E2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genéticaRESUMO
Spaceflight-related stresses impact health via various body systems, including the haematopoietic and immune systems, with effects ranging from moderate alterations of homoeostasis to serious illness. Oxidative stress appears to be involved in these changes, and the transcription factor Nrf2, which regulates expression of a set of cytoprotective and antioxidative stress response genes, has been implicated in the response to spaceflight-induced stresses. Here, we show through analyses of mice from the MHU-3 project, in which Nrf2-knockout mice travelled in space for 31 days, that mice lacking Nrf2 suffer more seriously from spaceflight-induced immunosuppression than wild-type mice. We discovered that a one-month spaceflight-triggered the expression of tissue inflammatory marker genes in wild-type mice, an effect that was even more pronounced in the absence of Nrf2. Concomitant with induction of inflammatory conditions, the consumption of coagulation-fibrinolytic factors and platelets was elevated by spaceflight and further accelerated by Nrf2 deficiency. These results highlight that Nrf2 mitigates spaceflight-induced inflammation, subsequent immunosuppression, and thrombotic microangiopathy. These observations reveal a new strategy to relieve health problems encountered during spaceflight.
Assuntos
Voo Espacial , Microangiopatias Trombóticas , Animais , Camundongos , Terapia de Imunossupressão , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genéticaRESUMO
The Tohoku Medical Megabank Project (TMM) has been conducting a birth and three-generation cohort study (the BirThree Cohort Study). We recruited 73,529 pregnant women and their family members for this cohort study, which included 23,143 newborns and 9,459 of their siblings. We designed and are in the process of conducting three-step health assessments for each newborn at approximately ages of 5, 10 and 16. These health assessments are administered at seven community support centers. Trained genome medical research coordinators conduct physical examinations of and collect biological specimens from each participant. The Sendai Children's Health Square has been established as the headquarters for these child health assessments and is utilized to accumulate knowledge that can facilitate the proper practice of child health assessments. We designed all the relevant health assessments facilities to allow parents and their children to participate in the health assessments concomitantly. Our centers serve as places where child participants and their parents can feel at ease as a result of the implementation of safety measures and child hospitality measures. The TMM BirThree Cohort Study is in the process of conducting strategically detailed health assessments and genome analysis, which can facilitate studies concerning the gene-environment interactions relevant to noncommunicable diseases. Through these operations, our study allows for a significant depth of data to be collected in terms of the number of biospecimens under study and the comprehensiveness of both basic and clinical data alongside relevant family information.
Assuntos
Saúde da Criança , Apoio Comunitário , Criança , Humanos , Feminino , Recém-Nascido , Gravidez , Estudos de Coortes , Parto , PaisRESUMO
Long-read sequencing technology enable better characterization of structural variants (SVs). To adapt the technology to population-scale analyses, one critical issue is to obtain sufficient amount of high-molecular-weight genomic DNA. Here, we propose utilizing activated T lymphocytes, which can be established efficiently in a biobank to stably supply high-grade genomic DNA sufficiently. We conducted nanopore sequencing of 333 individuals constituting 111 trios with high-coverage long-read sequencing data (depth 22.2x, N50 of 25.8 kb) and identified 74,201 SVs. Our trio-based analysis revealed that more than 95% of the SVs were concordant with Mendelian inheritance. We also identified SVs associated with clinical phenotypes, all of which appear to be stably transmitted from parents to offspring. Our data provide a catalog of SVs in the general Japanese population, and the applied approach using the activated T-lymphocyte resource will contribute to biobank-based human genetic studies focusing on SVs at the population scale.
Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA , Linfócitos T , TecnologiaRESUMO
Mast cells serve as a first-line defense of innate immunity. Interleukin-6 (IL-6) induced by bacterial lipopolysaccharide (LPS) in mast cells plays a crucial role in antibacterial protection. The zinc finger transcription factor GATA2 cooperatively functions with the ETS family transcription factor PU.1 in multiple mast cell activities. However, the regulatory landscape directed by GATA2 and PU.1 under inflammation remains elusive. We herein showed that a large proportion of GATA2-binding peaks were closely located with PU.1-binding peaks in distal cis-regulatory regions of inflammatory cytokine genes in mast cells. Notably, GATA2 and PU.1 played crucial roles in promoting LPS-mediated inflammatory cytokine production. Genetic ablation of GATA2-PU.1-clustered binding sites at the Il6 -39 kb region revealed its central role in LPS-induced Il6 expression in mast cells. We demonstrate a novel collaborative activity of GATA2 and PU.1 in cytokine induction upon inflammatory stimuli via the GATA2-PU.1 overlapping sites in the distal cis-regulatory regions.
RESUMO
Nrf2 activates cytoprotective gene expression, and Nrf2 activity is regulated through at least two protein degradation pathways: the Keap1-mediated and ß-TrCP-mediated pathways. To address the relative contributions of these pathways, we generated knock-in mouse lines expressing an Nrf2SA mutant that harbored two substitution mutations of serine residues interacting with ß-TrCP. The homozygous (Nrf2SA/SA) mice grew normally, with Nrf2 levels comparable to those of wild-type (WT) mice under unstressed conditions. However, when Keap1 activity was suppressed, high levels of Nrf2 accumulated in Nrf2SA/SA macrophages compared with that in WT macrophages. We crossed Nrf2SA/SA mice with mice in which Keap1 was knocked down to two different levels. We found that the Nrf2SA/SA mutation induced higher Nrf2 activity when the Keap1 level was strongly reduced, and these mice showed severe growth retardation. However, activation and growth retardation were not evident when Keap1 was moderately suppressed. These increases in Nrf2 activity induced by the Nrf2SA mutation caused severe hyperplasia and hyperkeratosis in the esophageal epithelium but did not cause abnormalities in the other tissues/organs examined. These results indicate that the ß-TrCP-mediated pathway cooperates with the Keap1-mediated pathway to regulate Nrf2 activity, which is apparent when the Keap1-mediated pathway is profoundly suppressed.
Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Contendo Repetições de beta-Transducina , Animais , Transtornos do Crescimento , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Contendo Repetições de beta-Transducina/químicaRESUMO
Members of the cap'n'collar (CNC) family of transcription factors, including Nrf1 and Nrf2, heterodimerize with small Maf (sMaf) proteins (MafF, MafG, and MafK) and regulate target gene expression through CNC-sMaf-binding elements (CsMBEs). We recently developed a unique tethered dimer assessment system combined with small Maf triple-knockout fibroblasts, which enabled the characterization of specific CNC-sMaf heterodimer functions. In this study, we evaluated the molecular function of the tethered Nrf1-MafG (T-N1G) heterodimer. We found that T-N1G activates the expression of proteasome subunit genes, well-known Nrf1 target genes, and binds specifically to CsMBEs in the proximity of these genes. T-N1G was also found to activate genes involved in proteostasis-related pathways, including endoplasmic reticulum-associated degradation, chaperone, and ubiquitin-mediated degradation pathways, indicating that the Nrf1-MafG heterodimer regulates a wide range of proteostatic stress response genes. By taking advantage of this assessment system, we found that Nrf1 has the potential to activate canonical Nrf2 target cytoprotective genes when strongly induced. Our results also revealed that transposable SINE B2 repeats harbor CsMBEs with high frequency and contribute to the target gene diversity of CNC-sMaf transcription factors.
Assuntos
Fator de Transcrição MafG , Fator 2 Relacionado a NF-E2 , Degradação Associada com o Retículo Endoplasmático , Fator de Transcrição MafG/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Proteínas Repressoras/metabolismoRESUMO
Space travel burdens health by imposing considerable environmental stress associated with radioactivity and microgravity. In particular, gravity change predominantly impacts blood pressure and bone homeostasis, both of which are controlled mainly by the kidneys. Nuclear factor erythroid-2-related transcription factor 2 (Nrf2) plays essential roles in protecting the kidneys from various environmental stresses and injuries. To elucidate the effects of space travel on mammals in preparation for the upcoming space era, our study investigated the contribution of Nrf2 to kidney function in mice two days after their return from a 31-day stay in the International Space Station using Nrf2 knockout mice. Meaningfully, expression levels of genes regulating bone mineralization, blood pressure and lipid metabolism were found to be significantly altered in the kidneys after space travel in an Nrf2-independent manner. In particular, uridine diphosphate-glucuronosyltransferase 1A (Ugt1a) isoform genes were found to be expressed in an Nrf2-dependent manner and induced exclusively in the kidneys after return to Earth. Since spaceflight elevated the concentrations of fatty acids in the mouse plasma, we suggest that Ugt1a isoform expression in the kidneys was induced to promote glucuronidation of excessively accumulated lipids and excrete them into urine after the return from space. Thus, the kidneys were proven to play central roles in adaptation to gravity changes caused by going to and returning from space by controlling blood pressure and bone mineralization. Additionally, kidney Ugt1a isoform induction after space travel implies a significant role of the kidneys for space travelers in the excretion of excessive lipids.
Assuntos
Metabolismo dos Lipídeos , Voo Espacial , Animais , Pressão Sanguínea/genética , Calcificação Fisiológica , Expressão Gênica , Rim/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismoRESUMO
Space travel induces stresses that contribute to health problems, as well as inducing the expression of Nrf2 (NF-E2-related factor-2) target genes that mediate adaptive responses to oxidative and other stress responses. The volume of epididymal white adipose tissue (eWAT) in mice increases during spaceflight, a change that is attenuated by Nrf2 knockout. We conducted metabolome analyses of plasma from wild-type and Nrf2 knockout mice collected at pre-flight, in-flight and post-flight time points, as well as tissues collected post-flight to clarify the metabolic responses during and after spaceflight and the contribution of Nrf2 to these responses. Plasma glycerophospholipid and sphingolipid levels were elevated during spaceflight, whereas triacylglycerol levels were lower after spaceflight. In wild-type mouse eWAT, triacylglycerol levels were increased, but phosphatidylcholine levels were decreased, and these changes were attenuated in Nrf2 knockout mice. Transcriptome analyses revealed marked changes in the expression of lipid-related genes in the liver and eWAT after spaceflight and the effects of Nrf2 knockout on these changes. Based on these results, we concluded that space stress provokes significant responses in lipid metabolism during and after spaceflight; Nrf2 plays critical roles in these responses.
Assuntos
Tecido Adiposo Branco/metabolismo , Epididimo/metabolismo , Fator 2 Relacionado a NF-E2/genética , Voo Espacial , Animais , Masculino , Metaboloma , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/metabolismoRESUMO
Ethnic-specific SNP arrays are becoming more important to increase the power of genome-wide association studies in diverse population. In the Tohoku Medical Megabank Project, we have been developing a series of Japonica Arrays (JPA) for genotyping participants based on reference panels constructed from whole-genome sequence data of the Japanese population. Here, we designed a novel version of the SNP array for the Japanese population, called Japonica Array NEO (JPA NEO), comprising a total of 666,883 markers. Among them, 654,246 tag SNPs of autosomes and X chromosome were selected from an expanded reference panel of 3,552 Japanese, 3.5KJPNv2, using pairwise r2 of linkage disequilibrium measures. Additionally, 28,298 markers were included for the evaluation of previously identified disease risk markers from the literature and databases, and those present in the Japanese population were extracted using the reference panel. Through genotyping 286 Japanese samples, we found that the imputation quality r2 and INFO score in the minor allele frequency bin >2.5-5% were >0.9 and >0.8, respectively, and >12 million markers were imputed with an INFO score >0.8. From these results, JPA NEO is a promising tool for genotyping the Japanese population with genome-wide coverage, contributing to the development of genetic risk scores.
Assuntos
Povo Asiático/genética , Estudo de Associação Genômica Ampla/métodos , Técnicas de Genotipagem/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Polimorfismo de Nucleotídeo Único/genética , Estudos de Coortes , Feminino , Frequência do Gene , Marcadores Genéticos , Genoma Humano , Genômica/métodos , Genótipo , Humanos , Japão , MasculinoRESUMO
The complete human genome sequence is used as a reference for next-generation sequencing analyses. However, some ethnic ancestries are under-represented in the reference genome (e.g., GRCh37) due to its bias toward European and African ancestries. Here, we perform de novo assembly of three Japanese male genomes using > 100× Pacific Biosciences long reads and Bionano Genomics optical maps per sample. We integrate the genomes using the major allele for consensus and anchor the scaffolds using genetic and radiation hybrid maps to reconstruct each chromosome. The resulting genome sequence, JG1, is contiguous, accurate, and carries the Japanese major allele at most loci. We adopt JG1 as the reference for confirmatory exome re-analyses of seven rare-disease Japanese families and find that re-analysis using JG1 reduces total candidate variant calls versus GRCh37 while retaining disease-causing variants. These results suggest that integrating multiple genomes from a single population can aid genome analyses of that population.
Assuntos
Povo Asiático/genética , Genoma Humano , Estudos de Coortes , Exoma/genética , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente PrincipalRESUMO
In the Tohoku Medical Megabank project, genome and omics analyses of participants in two cohort studies were performed. A part of the data is available at the Japanese Multi Omics Reference Panel (jMorp; https://jmorp.megabank.tohoku.ac.jp) as a web-based database, as reported in our previous manuscript published in Nucleic Acid Research in 2018. At that time, jMorp mainly consisted of metabolome data; however, now genome, methylome, and transcriptome data have been integrated in addition to the enhancement of the number of samples for the metabolome data. For genomic data, jMorp provides a Japanese reference sequence obtained using de novo assembly of sequences from three Japanese individuals and allele frequencies obtained using whole-genome sequencing of 8,380 Japanese individuals. In addition, the omics data include methylome and transcriptome data from â¼300 samples and distribution of concentrations of more than 755 metabolites obtained using high-throughput nuclear magnetic resonance and high-sensitivity mass spectrometry. In summary, jMorp now provides four different kinds of omics data (genome, methylome, transcriptome, and metabolome), with a user-friendly web interface. This will be a useful scientific data resource on the general population for the discovery of disease biomarkers and personalized disease prevention and early diagnosis.
Assuntos
Povo Asiático/genética , Genética Populacional , Genômica , Metilação de DNA/genética , Bases de Dados Genéticas , Variação Genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Metaboloma , Proteoma/metabolismo , Transcriptoma/genéticaRESUMO
Our body responds to environmental stress by changing the expression levels of a series of cytoprotective enzymes/proteins through multilayered regulatory mechanisms, including the KEAP1-NRF2 system. While NRF2 upregulates the expression of many cytoprotective genes, there are fundamental limitations in short-read RNA sequencing (RNA-Seq), resulting in confusion regarding interpreting the effectiveness of cytoprotective gene induction at the transcript level. To precisely delineate isoform usage in the stress response, we conducted independent full-length transcriptome profiling (isoform sequencing; Iso-Seq) analyses of lymphoblastoid cells from three volunteers under normal and electrophilic stress-induced conditions. We first determined the first exon usage in KEAP1 and NFE2L2 (encoding NRF2) and found the presence of transcript diversity. We then examined changes in isoform usage of NRF2 target genes under stress conditions and identified a few isoforms dominantly expressed in the majority of NRF2 target genes. The expression levels of isoforms determined by Iso-Seq analyses showed striking differences from those determined by short-read RNA-Seq; the latter could be misleading concerning the abundance of transcripts. These results support that transcript usage is tightly regulated to produce functional proteins under electrophilic stress. Our present study strongly argues that there are important benefits that can be achieved by long-read transcriptome sequencing.
Assuntos
Processamento Alternativo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , RNA Mensageiro/genética , Transcriptoma , Linhagem Celular Transformada , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Maleatos/farmacologia , Modelos Moleculares , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , RNA Mensageiro/classificação , RNA Mensageiro/metabolismoRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Human lymphoblastoid cell lines (LCLs) are valuable for the functional analyses of diseases. We have established more than 4200 LCLs as one of the resources of an integrated biobank. While oxidative and inflammatory stresses play critical roles in the onset and progression of various diseases, the responsiveness of LCLs, especially that of biobank-made LCLs, to these stresses has not been established. To address how LCLs respond to these stresses, in this study, we performed RNA sequencing of eleven human LCLs that were treated with an electrophile, diethyl maleate (DEM) and/or an inflammatory mediator, lipopolysaccharide (LPS). We found that over two thousand genes, including those regulated by a master regulator of the electrophilic/oxidative stress response, NRF2, were upregulated in LCLs treated with DEM, while approximately three hundred genes, including inflammation-related genes, were upregulated in LPS-treated LCLs. Of the LPS-induced genes, a subset of proinflammatory genes was repressed by DEM, supporting the notion that DEM suppresses the expression of proinflammatory genes through NRF2 activation. Conversely, a part of DEM-induced gene was repressed by LPS, suggesting reciprocal interference between electrophilic and inflammatory stress-mediated pathways. These data clearly demonstrate that LCLs maintain, by and large, responsive pathways against oxidative and inflammatory stresses and further endorse the usefulness of the LCL supply from the biobank.
Assuntos
Regulação da Expressão Gênica , Estresse Oxidativo , Linhagem Celular , Humanos , Oxirredução , Estresse Oxidativo/genética , Análise de Sequência de RNARESUMO
Space flight produces an extreme environment with unique stressors, but little is known about how our body responds to these stresses. While there are many intractable limitations for in-flight space research, some can be overcome by utilizing gene knockout-disease model mice. Here, we report how deletion of Nrf2, a master regulator of stress defense pathways, affects the health of mice transported for a stay in the International Space Station (ISS). After 31 days in the ISS, all flight mice returned safely to Earth. Transcriptome and metabolome analyses revealed that the stresses of space travel evoked ageing-like changes of plasma metabolites and activated the Nrf2 signaling pathway. Especially, Nrf2 was found to be important for maintaining homeostasis of white adipose tissues. This study opens approaches for future space research utilizing murine gene knockout-disease models, and provides insights into mitigating space-induced stresses that limit the further exploration of space by humans.