Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 10(11): e0143457, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618777

RESUMO

Both the yeast nascent polypeptide-associated complex (NAC) and the Hsp40/70-based chaperone system RAC-Ssb are systems tethered to the ribosome to assist cotranslational processes such as folding of nascent polypeptides. While loss of NAC does not cause phenotypic changes in yeast, the simultaneous deletion of genes coding for NAC and the chaperone Ssb (nacΔssbΔ) leads to strongly aggravated defects compared to cells lacking only Ssb, including impaired growth on plates containing L-canavanine or hygromycin B, aggregation of newly synthesized proteins and a reduced translational activity due to ribosome biogenesis defects. In this study, we dissected the functional properties of the individual NAC-subunits (α-NAC, ß-NAC and ß'-NAC) and of different NAC heterodimers found in yeast (αß-NAC and αß'-NAC) by analyzing their capability to complement the pleiotropic phenotype of nacΔssbΔ cells. We show that the abundant heterodimer αß-NAC but not its paralogue αß'-NAC is able to suppress all phenotypic defects of nacΔssbΔ cells including global protein aggregation as well as translation and growth deficiencies. This suggests that αß-NAC and αß'-NAC are functionally distinct from each other. The function of αß-NAC strictly depends on its ribosome association and on its high level of expression. Expression of individual ß-NAC, ß'-NAC or α-NAC subunits as well as αß'-NAC ameliorated protein aggregation in nacΔssbΔ cells to different extents while only ß-NAC was able to restore growth defects suggesting chaperoning activities for ß-NAC sufficient to decrease the sensitivity of nacΔssbΔ cells against L-canavanine or hygromycin B. Interestingly, deletion of the ubiquitin-associated (UBA)-domain of the α-NAC subunit strongly enhanced the aggregation preventing activity of αß-NAC pointing to a negative regulatory role of this domain for the NAC chaperone activity in vivo.


Assuntos
Chaperonas Moleculares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA