Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 638688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267767

RESUMO

The root system plays an essential role in the development and physiology of the plant, as well as in its response to various stresses. However, it is often insufficiently studied, mainly because it is difficult to visualize. For grapevine, a plant of major economic interest, there is a growing need to study the root system, in particular to assess its resistance to biotic and abiotic stresses, understand the decline that may affect it, and identify new ecofriendly production systems. In this context, we have evaluated and compared three distinct growing methods (hydroponics, plane, and cylindric rhizotrons) in order to describe relevant architectural root traits of grapevine cuttings (mode of grapevine propagation), and also two 2D- (hydroponics and rhizotron) and one 3D- (neutron tomography) imaging techniques for visualization and quantification of roots. We observed that hydroponics tubes are a system easy to implement but do not allow the direct quantification of root traits over time, conversely to 2D imaging in rhizotron. We demonstrated that neutron tomography is relevant to quantify the root volume. We have also produced a new automated analysis method of digital photographs, adapted for identifying adventitious roots as a feature of root architecture in rhizotrons. This method integrates image segmentation, skeletonization, detection of adventitious root skeleton, and adventitious root reconstruction. Although this study was targeted to grapevine, most of the results obtained could be extended to other plants propagated by cuttings. Image analysis methods could also be adapted to characterization of the root system from seedlings.

2.
J Colloid Interface Sci ; 565: 474-482, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982714

RESUMO

HYPOTHESIS: Colloidal silica dispersions dried under controlled conditions form solid gels that display mechanical properties similar to those observed in several practical processes. An understanding of their structural characteristics and liquid flow properties can therefore help establish these gels as an alternative family of model materials to study practical porous systems. EXPERIMENTS: Neutron radiography is a non-destructive technique well-adapted to study hydrogen-rich domains in porous materials due to the high attenuation power of hydrogen. We apply this technique to study gels prepared from silica nanoparticles of radii 5-40 nm. FINDINGS: The water content in the gels have been quantified and different types of porosities have been determined: total porosity, effective porosity that contributes to liquid flow, and residual porosity that contains bound residual water. This residual water increases with decrease in particle size and constitutes an important fraction of the gel. The dynamics of water imbibition follows a √t law, from which the effective pore size and permeability are evaluated. We highlight the role of particle size on water retention, on particle organization and its impact on mechanical resistance. Quantitative analysis of the propagating liquid front shows front broadening that suggests elongated pores with reduced correlated liquid menisci.

3.
Nanomaterials (Basel) ; 9(4)2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31010167

RESUMO

A nano-silica consolidant and nano-titania modified tetraethyl-orthosilicate were applied on two building stones, a carbonate and a silicate, by brush, poultice or capillary absorption. Neutron radiography was used to monitor capillary water absorption, and to analyse changes in physical properties caused by heat treatment of specimens for the purposes of artificially ageing and different treatment applications with stone consolidants. Moreover, ultrasonic pulse velocity and gravimetrically determined water absorption were analysed to cross-validate neutron radiography. The results reveal that reactive systems like tetraethyl-orthosilicates need an unknown period for polymerisation, which makes nano-silica consolidants more favourable for construction follow-up work. While polymerisation is incomplete, hydrophobic behaviour, water trapping and pore clogging are evident. Within the tetraethyl-orthosilicate treatment, poultice and brushing are strongly influenced by the applicant, which results in wide ranging amounts of water absorbed and anomalous water distributions and kinetics. The carbonate lithotype displays polymerisation initiated in the core of the specimen, while the lateral surfaces are still mostly hydrophobic. Reaction time differences can be attributed to the different amounts of consolidants applied, which is a result of the chosen application settings. Artificial ageing of stone specimens is a prerequisite when mechanical strength gain is studied, as demonstrated by sound speed propagation.

4.
Nano Lett ; 14(6): 3481-6, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24828234

RESUMO

The implementation of nano-objects in numerous emerging applications often demands their integration in macroscopic devices. Here we present the bottom-up epitaxial solution growth of high-density arrays of vertical 5 nm diameter single-crystalline metallic cobalt nanowires on wafer-scale crystalline metal surfaces. The nanowires form regular hexagonal arrays on unpatterned metallic films. These hybrid heterostructures present an important perpendicular magnetic anisotropy and pave the way to a high density magnetic recording device, with capacities above 10 Terabits/in(2). This method bypasses the need of assembling and orientating free colloidal nanocrystals on surfaces. Its generalization to other materials opens new perspectives toward many applications.

6.
J Colloid Interface Sci ; 362(2): 397-405, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21802092

RESUMO

The ethanolamine salt of 12-hydroxy stearic acid is known to form tubes having a temperature tunable diameter. Here, we study the behavior of those tubes at the air/water interface by using Neutron Reflectivity. We observed that tubes indeed adsorbed at this interface below a fatty acid monolayer and exhibit the same temperature behavior as in bulk. There is however a peculiar behavior at around 50 °C for which the increase of the diameter of the tubes at the interface yields an unfolding of those tubes into a multilamellar layer. Upon further heating, the tubes re-fold and their diameter re-decreases after which they melt into micelles as observed in the bulk. All structural transitions at the interface are nevertheless reversible. This provides to the system a high interest for its interfacial properties because the structure at the air/water interface can be tuned easily by the temperature.


Assuntos
Micelas , Transição de Fase , Ácidos Esteáricos/química , Temperatura de Transição , Adsorção , Ar , Água
7.
J Phys Condens Matter ; 20(26): 264009, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-21694343

RESUMO

We describe the use of neutron scattering techniques such as reflectivity and diffraction for the study of oxide thin films. We first describe how neutron reflectivity can complement x-ray reflectivity for the study of some oxide materials. We then emphasize magnetic thin films which have become an important field of study in the 1990s, following the discovery of new phenomena in heterostructures: magnetic exchange coupling, exchange bias coupling at antiferro/ferromagnetic interfaces, enhanced magnetism in ultrathin films or tunnel magnetoresistance for example. We show how neutron scattering can provide detailed quantitative information about the magnetization depth profiles of thin films and about the magnetic order in epitaxial films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA