Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
iScience ; 27(6): 110121, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38957793

RESUMO

Aerobic exercise training (AET) has emerged as a strategy to reduce cancer mortality, however, the mechanisms explaining AET on tumor development remain unclear. Tumors escape immune detection by generating immunosuppressive microenvironments and impaired T cell function, which is associated with T cell mitochondrial loss. AET improves mitochondrial content and function, thus we tested whether AET would modulate mitochondrial metabolism in tumor-infiltrating lymphocytes (TIL). Balb/c mice were subjected to a treadmill AET protocol prior to CT26 colon carcinoma cells injection and until tumor harvest. Tissue hypoxia, TIL infiltration and effector function, and mitochondrial content, morphology and function were evaluated. AET reduced tumor growth, improved survival, and decreased tumor hypoxia. An increased CD8+ TIL infiltration, IFN-γ and ATP production promoted by AET was correlated with reduced mitochondrial loss in these cells. Collectively, AET decreases tumor growth partially by increasing CD8+ TIL effector function through an improvement in their mitochondrial content and function.

2.
Antioxidants (Basel) ; 12(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37237940

RESUMO

Heme is an iron-protoporphyrin complex with an essential physiologic function for all cells, especially for those in which heme is a key prosthetic group of proteins such as hemoglobin, myoglobin, and cytochromes of the mitochondria. However, it is also known that heme can participate in pro-oxidant and pro-inflammatory responses, leading to cytotoxicity in various tissues and organs such as the kidney, brain, heart, liver, and in immune cells. Indeed, heme, released as a result of tissue damage, can stimulate local and remote inflammatory reactions. These can initiate innate immune responses that, if left uncontrolled, can compound primary injuries and promote organ failure. In contrast, a cadre of heme receptors are arrayed on the plasma membrane that is designed either for heme import into the cell, or for the purpose of activating specific signaling pathways. Thus, free heme can serve either as a deleterious molecule, or one that can traffic and initiate highly specific cellular responses that are teleologically important for survival. Herein, we review heme metabolism and signaling pathways, including heme synthesis, degradation, and scavenging. We will focus on trauma and inflammatory diseases, including traumatic brain injury, trauma-related sepsis, cancer, and cardiovascular diseases where current work suggests that heme may be most important.

3.
Biol Pharm Bull ; 34(8): 1204-14, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21804207

RESUMO

Heme oxygenase-1 (HO-1, encoded by the HMOX1 gene) and inducible nitric oxide synthase (iNOS) have been implicated in vascular disease; however the role of these genes remains unclear. Therefore, we studied the mechanism by which iNOS-derived nitric oxide (NO) affects the intimal hyperplasia (IH) formation in relation to HO-1. We show, in a model of balloon injury in rats, that the suppression of vascular smooth muscle cells (VSMC) proliferation by NO required HO-1, while induction of apoptosis of the VSMC by NO does not involve HO-1. To better clarify the molecular mechanism of this finding, we used Hmox1(+/+) and Hmox1(-/-) VSMC exposed to NO. In Hmox1(+/+) VSMC, NO is antiproliferative (up to 34% inhibition) and it is associated to an increase of apoptosis (up to 35%) due to a decrease of X-linked inhibitor of apoptosis protein (XIAP) expression level and to the activation of caspase-3. In the absence of HO-1 (Hmox1(-/-) VSMC) apoptosis was significantly greater (69% p<0.01 vs. Hmox1(+/+) VSMC) demonstrating that HO-1 attenuated the pro-apoptotic effect of NO on VSMC. In the context of IH, the pro-apoptotic effect of NO on VSMC is increased in the absence of HO-1 and exerts therapeutic effects with a significant reduction in IH.


Assuntos
Apoptose , Heme Oxigenase-1/antagonistas & inibidores , Músculo Liso Vascular/lesões , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo , Túnica Íntima/patologia , Animais , Caspase 3/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Expressão Gênica , Heme Oxigenase-1/genética , Hiperplasia/prevenção & controle , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Óxido Nítrico/uso terapêutico , Ratos , Ratos Sprague-Dawley , Túnica Íntima/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA