Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 372, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501108

RESUMO

BACKGROUND: The increased frequency of heavy rains in recent years has led to submergence stress in rice paddies, severely affecting rice production. Submergence causes not only hypoxic stress from excess water in the surrounding environment but also osmotic stress in plant cells. We assessed physiological responses and Ethylene-Response AP2/ERF Factor regulation under submergence conditions alone and with ionic or nonionic osmotic stress in submergence-sensitive IR64 and submergence-tolerant IR64-Sub1 Indica rice cultivars. RESULTS: Our results indicate that both IR64 and IR64-Sub1 exhibited shorter plant heights and root lengths under submergence with nonionic osmotic stress than normal condition and submergence alone. IR64-Sub1 seedlings exhibited a significantly lower plant height under submergence conditions alone and with ionic or nonionic osmotic stress than IR64 cultivars. IR64-Sub1 seedlings also presented lower malondialdehyde (MDA) concentration and higher survival rates than did IR64 seedlings after submergence with ionic or nonionic osmotic stress treatment. Sub1A-1 affects reactive oxygen species (ROS) accumulation and antioxidant enzyme activity in rice. The results also show that hypoxia-inducible ethylene response factors (ERF)-VII group and alcohol dehydrogenase 1 (ADH1) and lactate dehydrogenase 1 (LDH1) genes exhibited different expression levels under nonionic or ionic osmotic stress during submergence on rice. CONCLUSIONS: Together, these results demonstrate that complex regulatory mechanisms are involved in responses to the aforementioned forms of stress and offer new insights into the effects of submergence and osmotic stress on rice.


Assuntos
Oryza , Estresse Fisiológico , Etilenos , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Pressão Osmótica , Álcool Desidrogenase/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plants (Basel) ; 9(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261122

RESUMO

Vegetable crops of the genus Cucumis are very popular worldwide and have great market value. However, their fruit quality and yield are hindered by viral diseases. C. metuliferus is considered a wild species with resistance to viral diseases that is lacking in cultivated crops of the Cucumis genus, such as melon. The C. metuliferus line L37 shows extreme resistance against Papaya ringspot virus (PRSV-HA), whereas line L35 is a susceptible line. In this study, reciprocal grafting experiments between L35 and L37 were performed, and the PRSV-HA strain was pre-inoculated in the rootstock leaves. The results revealed that the resistance signal in the L37 rootstock could transmit and provide resistance to the L35 scion. Subsequently, double sandwich grafting was performed using the pre-inoculated L35 as the rootstock, which was then grafted onto the L37 intermediate and the L35 scion. The results showed that PRSV-HA RNA accumulated in the L35 rootstock leaf, petiole, and stem tissues, whereas PRSV-HA RNA accumulated in some intermediate and scion petiole and stem tissues. No HCPro RNA was detected in the L35 scion leaves. The results showed that the suppression of the virus occurred in the leaves, and the resistance effect spread from the rootstock in the scion direction. Hence, this study has demonstrated that RNA silencing of systemic signals is responsible for L37 resistance against PRSV. C. metuliferus L37 could provide a valuable resistance source for crops of the Cucumis species against viral diseases through grafting.

3.
Plants (Basel) ; 9(8)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756426

RESUMO

Oryza sativa is a major food crop in Asia. In recent years, typhoons and sudden downpours have caused field flooding, which has resulted in serious harm to the production of rice. In this study, our data revealed that the plant heights of the five Japonica varieties increased during submergence. The elongation rates of TN14, KH139, and TK9 increased significantly during submergence. Chlorophyll contents of the five varieties significantly decreased after submergence and increased after recovery. Moreover, the chlorophyll content of KH139 was significantly higher than those of the other four varieties after recovery. The plant survival rates of the five varieties were higher than 50% after four-day submergence. After eight-day submergence, the survival rate of KH139 remained at 90%, which was the highest among the different varieties. The KH139 presented lower accumulation of hydrogen peroxide and the catalase activity than those of the other four varieties under submergence. The sucrose synthase 1 and alcohol dehydrogenase 1 were induced in KH139 under submergence. The results presented that different varieties of japonica rice have different flood tolerances, especially KH139 under submergence was superior to that of the other four varieties. These results can provide crucial information for future research on japonica rice under flooding stress.

4.
Protoplasma ; 254(4): 1705-1714, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27995331

RESUMO

Hypoxia deprives cells of energy and induces severe physical damage in embryophytes. Under hypoxia, the equilibrium between ethylene and H2O2 affects the response of the transcription factor AtERF73/HRE1. To evaluate the role of AtERF73/HRE1 during hypoxia signaling, we used three independent AtERF73/HRE1 knockout lines to detect H2O2 accumulation. The results revealed that under hypoxia, H2O2 accumulation in the AtERF73/HRE1 knockout lines decreased, indicating that AtERF73/HRE1 uses a negative feedback regulation mechanism to influence the production of H2O2 induced through hypoxia signal transduction. Quantitative RT-PCR analyses showed that oxygen deficiency had different effects on the expression of the hypoxia-induced genes Rboh B, D, G, and I in the AtERF73/HRE1 knockout lines. In particular, Rboh B and D expression were increased, whereas Rboh G expression was decreased. The expression of Rboh I was increased at 1 h but decreased at 3 h during hypoxia treatment in the AtERF73/HRE1 knockout lines. Similarly, the transcript levels of antioxidant and hypoxia-induced/ethylene response genes in the AtERF73/HRE1 knockout lines were affected by hypoxic stress, indicating that AtERF73/HRE1 is essential to hypoxia signal transduction in embryophytes. Additionally, in histochemical analysis, AtERF73/HRE1 promoter-induced GUS expression was detected in various plant parts throughout the plant growth process (e.g., leaves, inflorescences, siliques), particularly in the edges of mature leaves and guard cells. Taken together, our results confirm that AtERF73/HRE1 plays a role in H2O2 production by affecting the hypoxia-induced expression of Rboh genes in hypoxia signal transduction.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/genética , Transativadores/fisiologia , Arabidopsis/metabolismo , Hipóxia Celular , Flores/citologia , Flores/genética , Flores/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/metabolismo , Regiões Promotoras Genéticas , Plântula/citologia , Plântula/genética , Plântula/metabolismo , Transdução de Sinais , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA