Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insect Sci ; 29(3): 801-816, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34586709

RESUMO

Pesticide resistance and resurgence are serious problems often occurring simultaneously in the field. In our long-term study of a fenpropathrin-resistant strain of Tetranychus cinnabaribus, enhancement of detoxification and modified fecundity mechanisms were both observed. Here we investigate the network across these two mechanisms and find a key node between resistance and resurgence. We show that the ecdysone pathway is involved in regulating the fecundity of T. cinnabaribus. The concentration change of ecdysone is consistent with the fecundity curve; the concentration of ecdysone is higher in the fenpropathrin-resistant strain which has stronger fecundity. The enhancement of ecdysone is due to overexpression of two P450 genes (CYP314A1 and CYP315A1) in the ecdysone synthesis pathway. Silencing expression of these CYP genes resulted in lower concentration of ecdysone, reduced expression of vitellogenin, and reduced fecundity of T. cinnabaribus. The expression of CYP315A1 is regulated by transcription factors Cap-n-collar isoform C (CncC) and Musculoaponeurotic fibrosarcoma protein (Maf), which are involved in regulating other P450 genes functioning in detoxification of fenpropathrin in T. cinnabaribus. A similar regulation is established in citrus pest mite Panonychus citri showing that the CncC pathway regulates expression of PcCYP315A1, which affects mite fecundity. Transcription factors are activated to upregulate detoxification genes facilitating pesticide resistance, while the "one to multiple" regulation mode of transcription factors simultaneously increases expression of metabolic enzyme genes in hormone pathways and alters the physiology of pests. This is an important response of arthropods to pesticides which leads to resistance and population resurgence.


Assuntos
Fibrossarcoma , Ácaros , Praguicidas , Tetranychidae , Animais , Ecdisona , Ácaros/genética , Tetranychidae/genética , Fatores de Transcrição/genética
2.
PLoS One ; 16(3): e0248749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760871

RESUMO

The striped flea beetle, Phyllotreta striolata (Fabricius), damages crops in the Brassicaceae. The genetic data for this pest are insufficient to reveal its insecticide resistance mechanisms or to develop molecular markers for resistance monitoring. We used PacBio Iso-Seq technology to sequence the full-length transcriptome of P. striolata. After isoform sequence clustering and removal of redundant transcripts, a total of 41,293 transcripts were obtained, and 35,640 of these were annotated in the database of gene products. Structure analysis uncovered 4,307 alternative splicing events, and 3,836 sequences were recognized as lncRNAs. Transcripts with the complete coding region of important detoxification enzymes were further classified. There were 57 transcripts of P450s distributed in CYP2, CYP3, CYP4, and Mito CYP clades, 29 transcripts of ESTs from 4 functional groups, 17 transcripts of GSTs classified into 5 families, 51 transcripts of ABCs distributed in 6 families, and 19 transcripts of UGTs. Twenty-five lncRNAs were predicted to be regulators of these detoxification genes. Full-length transcriptome sequencing is an efficient method for molecular study of P. striolata and it is also useful for gene function analysis.


Assuntos
Besouros/genética , Resistência a Inseticidas/genética , Transcriptoma/genética , Animais , Perfilação da Expressão Gênica/métodos
3.
Pestic Biochem Physiol ; 159: 85-90, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31400788

RESUMO

RNA interference (RNAi) is a potentially useful pest control method because of its high specificity. Silencing the expression of important RNAi target genes of pests will block important biological processes and reduce pest damage. Ecdysone is a unique arthropod hormone and the ecdysone receptor (EcR) is a key factor in molting pathway. We investigated the possibility that dsRNA targeting of the EcR of Tetranychus cinnabarinus (TcEcR) could effectively block development from larvae to adults. The mRNA level of TcEcR was highest in the larva stage, and 73.1% of the mites failed to survive the larva stage when TcEcR expression was silenced. Only 11.7% of T. cinnabarinus ingesting dsRNA successfully developed into adults, while 86.7% in the control succeeded in molting across each stage. RNAi significantly increased the developmental intervals of T. cinnabarinus. Under the effects of dsRNA, development times for the larva and first nymph doubled. Phenotype of body size change and death were observed during the development of T. cinnabarinus ingesting dsRNA. These findings suggest that RNAi is a potential means for the control of T. cinnabarinus. Genes in hormone pathways such as EcR are possible RNAi targets.


Assuntos
Larva/metabolismo , Interferência de RNA/fisiologia , Receptores de Esteroides/metabolismo , Tetranychidae/metabolismo , Animais , Tamanho Corporal , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Cadeia Dupla/genética , Receptores de Esteroides/genética , Tetranychidae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA