Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928145

RESUMO

Polyurethane (PU) is a promising material for addressing challenges in bone grafting. This study was designed to enhance the bone grafting capabilities of PU by integrating hydroxyapatite (HAp), which is known for its osteoconductive and osteoinductive potential. Moreover, a uniform distribution of HAp in the porous structure of PU increased the effectiveness of bone grafts. PEG/APTES-modified scaffolds were prepared through self-foaming reactions. A uniform pore structure was generated during the spontaneous foaming reaction, and HAp was uniformly distributed in the PU structure (PU15HAp and PU30HAp) during foaming. Compared with the PU scaffolds, the HAp-modified PU scaffolds exhibited significantly greater protein absorption. Importantly, the effect of the HAp-modified PU scaffold on bone repair was tested in a rat calvarial defect model. The microstructure of the newly formed bone was analyzed with microcomputed tomography (µ-CT). Bone regeneration at the defect site was significantly greater in the HAp-modified PU scaffold group than in the PU group. This innovative HAp-modified PU scaffold improves current bone graft materials, providing a promising avenue for improved bone regeneration.


Assuntos
Regeneração Óssea , Durapatita , Poliuretanos , Crânio , Alicerces Teciduais , Poliuretanos/química , Animais , Durapatita/química , Alicerces Teciduais/química , Ratos , Regeneração Óssea/efeitos dos fármacos , Crânio/efeitos dos fármacos , Crânio/lesões , Crânio/patologia , Crânio/metabolismo , Ratos Sprague-Dawley , Microtomografia por Raio-X , Masculino , Porosidade , Transplante Ósseo/métodos
2.
3D Print Addit Manuf ; 10(5): 1055-1063, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886416

RESUMO

In this study, normal and floating builds of Ti-6Al-4V were fabricated by electron beam additive manufacturing. The effects of the spatial arrangement on the microstructure, mechanical properties, and surface roughness of the parts were investigated. Both the normal and floating builds exhibited an α+ß lamellar microstructure, but the normal builds had finer grains compared to the floating builds. The microstructural characteristics were correlated with the thermal history, specifically the cooling rate, resulting from the connection plate (S45C for the normal builds and the powder bed for the floating builds). The compressive yield strength and hardness of the normal builds were higher than those of the floating builds, regardless of build location owing to the grain refinement effects on the normal builds. The top surface (TS) of the sample was smoothest, and the lateral surface of the sample was the roughest for both the normal and floating builds; however, the roughness of the TS and bottom surface samples did not differ significantly between normal and floating builds. There were no noticeable differences in the microstructure and mechanical properties of the builds in five different positions, that is, the center and four corners. Finally, these findings were used to develop a set of conceptual spatial arrangement designs, including floating builds, to optimize the microstructure and mechanical properties.

3.
Materials (Basel) ; 16(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36837092

RESUMO

The surfaces of cold-rolled titanium-containing ferrite stainless steel (TCFSS) strips produced from scrap are prone to severe peeling owing to cracking near slab inclusions during hot rolling. In this study, the Taguchi method was used to prevent peeling defects and clogging of the submerged entrance nozzle, and the optimal casting parameters, such as the degree of casting overheating, casting speed, stirring time, and inclination, were determined. The results showed that increasing the degree of casting overheating and decreasing the casting speed prevented clogging and effectively mitigated peeling defects. Sample A3B1C3D2 had the optimal parameters to reduce the clog thickness to less than 1.5 mm, i.e., a degree of overheating of 60 °C, a casting speed of 0.80 m/min, a stirring time of 12.0 s, and an inclination angle of 6.0°. Sample A3B1C1D3 had the optimal parameters to prevent peeling defects, i.e., a degree of overheating of 60 °C, a casting speed of 0.80 m/min, a stirring time of 10.0 s, and an inclination angle of 6.2°. When casting using these optimal parameters, no peeling defects were observed on the surfaces of the TCFSS strips. The TCFSS strips produced using the optimized parameters exhibited the required mechanical properties and satisfied the design criteria. The parameters included a tensile strength of ≥415 MPa, a yield strength of ≥205 MPa, an elongation of ≥22%, and a hardness of ≤89 HRB.

4.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563142

RESUMO

Nowadays, the structural complexity of dyes used in the textile industry and the widely adopted water-saving strategy in the dyeing processes often fail plants' biological wastewater treatment units due to chemical oxygen demand (COD) overload. To alleviate this problems, this study investigated a regenerable adsorption-oxidation process to treat dyeing wastewater with COD around 10,000 mg/dm3 using a highly nano-pored activated carbon (AC) as a COD adsorbent, followed by its regeneration using hydrogen peroxide as an oxidizing reagent. In addition to studying AC's COD adsorption and oxidation performance, its operational treatment conditions in terms of temperature and pH were assessed. The results firstly demonstrated that about 50-60% of the COD was consistently adsorbed during the repeated adsorption operation before reaching AC's maximum adsorption capacity (qmax) of 0.165 g-COD/g-AC. The optimal pH and temperature during adsorption were 4.7 and 25 °C, respectively. Secondly, AC regeneration was accomplished by using an initial peroxide concentration of 2.5% (by wt %) and EDTA-Fe of 2.12 mmole/dm3. The reuse of the regenerated ACs was doable. Surprisingly, after the first AC regeneration, the COD adsorption capacity of the regenerated AC even increased by ~7% with respect to the virgin AC. Thirdly, the results of a five-consecutive adsorption-regeneration operation showed that a total of 0.3625 g COD was removed by the 5 g AC used, which was equivalent to an adsorption capacity (q) of 0.0725 (= 0.3625/5) g-COD/g-AC during each adsorption stage. Based on the obtained results, a regenerable COD adsorption-oxidation process using a nano-pored AC to treat the high-textile-COD wastewater looks promising. Thus, a conceptual treatment unit was proposed, and its potential benefits and limitations were addressed.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Análise da Demanda Biológica de Oxigênio , Carvão Vegetal/química , Corantes , Oxirredução , Eliminação de Resíduos Líquidos/métodos
5.
Materials (Basel) ; 15(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35208073

RESUMO

Poor formability in hot-rolled strips may be attributed to the many pearlite-banded structures (PBSs) that develop in steel during the hot-rolling process. The challenge of manufacturing strips with minimum PBSs is that multiple factors influence the amount and distribution of the PBSs. This study used the Taguchi method to find the optimum hot-rolling parameters to obtain strips with a reduced number of PBSs. The strips were then subjected to bending tests to evaluate their ductility. The first part analyzes the contribution of selected parameters to the hot-rolling process: (1) finishing rolling temperature, (2) finishing rolling speed, (3) coiling temperature, and (4) coiling speed. The second part confirms, using bending tests, the influence of the finishing rolling temperatures 780, 800, 820, 840, 860, 870, and 880 °C on the formability of an A36 hot-rolled strip. Based on the experimental protocol for the study, the optimal process parameters were determined to be the finishing rolling speed (0.80 m/s), finishing rolling temperature (870 °C), coiling speed (2.80 m/s), and coiling temperature (650 °C). When the A36 strip was prepared at the optimum parameters, the average length and thickness of the PBS were 108.61 ± 0.11 µm and 10.18 ± 0.12 µm, respectively. According to the Taguchi analysis, the finishing rolling temperature had the most significant influence on the dimensions of the PBS. In tests where the hot-rolled A36 strip was bent to 90° and 180°, at the finishing rolling temperatures of 870 °C and 880 °C, no cracking was observed at the R angle.

6.
Materials (Basel) ; 14(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34640205

RESUMO

Indium tin oxide (ITO) thin films on polycarbonate (PC) substrates were patterned using the laser direct-write (LDW) technique to form an isolation line. The effect of the LDW parameters (power, pulse repetition rate, and defocusing distance) on the isolation line width, depth and roughness of the PC within the line was investigated. Additionally, the Taguchi method of experimental design was applied to determine the optimal parameters of LDW. Results showed that increasing the power led to an increase in the isolation line width and decrease in the surface roughness of the PC within the line. The increase in the pulse repetition rate and defocusing distance caused a decrease in the isolation line width. The optimal parameters were found to be A2B3C3, consisting of power of 5 W, pulse repetition rate of 100 kHz, and defocusing distance of +3 mm. Under these parameters, we obtained an isolation line width of 48.4 µm, and a surface roughness of Ra 38 nm of the PC within the isolation line. We confirmed that the ITO films separated by the isolation lines attained electrical isolation.

7.
Polymers (Basel) ; 13(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067423

RESUMO

This study developed a tannic acid (TA)-supplemented 2-hydroxyethyl methacrylate-co-sulfobetaine methacrylate (HEMA-co-SBMA) nanocomposite hydrogel with mineralization and antibacterial functions. Initially, hybrid hydrogels were synthesized by incorporating SBMA into the HEMA network and the influence of SBMA on the chemical structure, water content, mechanical properties, and antibacterial characteristics of the hybrid HEMA/SBMA hydrogels was examined. Then, nanoclay (Laponite XLG) was introduced into the hybrid HEMA/SBMA hydrogels and the effects evaluated of the nanoclay on the chemical structure, water content, and mechanical properties of these supplemented hydrogels. The 50/50 hybrid HEMA/SBMA hydrogel with 30 mg/mL nanoclay showed outstanding mechanical properties (3 MPa) and water content (60%) compared to pure polyHEMA hydrogels. TA then went on to be incorporated into these hybrid nanocomposite hydrogels and its effects investigated on biomimetic mineralization. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) showed that bone-like spheroidal precipitates with a Ca/P ratio of 1.67% were observed after 28 days within these mineralized hydrogels. These mineralized hydrogels demonstrated an almost 1.5-fold increase in compressive moduli compared to the hydrogels without mineralization. These multifunctional hydrogels display good mechanical and biomimetic properties and may have applications in bone regeneration therapies.

8.
Carbohydr Polym ; 257: 117639, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541664

RESUMO

A biocomposite coating comprising chitosan and ZnO deposited on a porous Ti oxide is developed to avoid orthopedic and dental implant-related infections. The coating comprised of an inner layer of nanoporous TiO2 and the outer layer of the chitosan matrix with ZnO nanoparticles. Microbiological tests show that chitosan coating is effective against Escherichia coli (E. coli), however, its ability to inhibit bacterial adhesion is very limited. A 1.2-fold increase in the antibacterial activity of chitosan/ZnO coating against E. coli was detected as compared to the chitosan coating alone, and the chitosan/ZnO efficiently inhibited biofilm formation. In addition, the chitosan/ZnO coating exhibited improved bioactivity compared to the chitosan coating. The improvement in antibacterial properties and bioactivity of the chitosan/ZnO coating is attributed to the release of Zn2+ ions. The critical force of scratching the chitosan/ZnO coating was approximately twice that of the chitosan coating. The potentiodynamic polarization results confirmed that the corrosion resistance of the implant with ZnO/chitosan/Ti structure was improved. In addition, cytocompatibility evaluation indicated that the chitosan/ZnO coating has good cytocompatibility in MG-63 cells as compared to pure Ti.


Assuntos
Anti-Infecciosos/química , Quitosana/química , Escherichia coli/efeitos dos fármacos , Desenho de Prótese , Titânio/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Biofilmes , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/química , Humanos , Íons , Nanopartículas/química , Porosidade , Potenciometria , Próteses e Implantes , Propriedades de Superfície
9.
Materials (Basel) ; 13(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050296

RESUMO

In this study, powder metallurgy was used to fabricate titanium nitride/nickel metal-matrix composites. First, titanium and nickel powders with weight ratios of 20:80, 50:50 and 80:20 were dry mixed for 24 h. After cold isostatic pressing, the green compacts were soaked in a water-based hot forging lubricant and sintered at 850, 950 and 1050 °C for 1.5 h in an air atmosphere. The effects of the amounts of titanium powder and the sintering temperatures on the mechanical properties (hardness, wear resistance and compressive strength) of the composites were investigated. The results indicated that titanium gradually transformed into titanium nitride near the surface after sintering due to the carbothermal reduction reaction; this transformation was observed to significantly increase the hardness. In addition, an oxygen-rich film was observed to form between the titanium nitride particles and the nickel matrix. An optimum sintering temperature of 950 °C provides the composites (titanium-nickel weight ratios of 20:80) the best mechanical properties (wear resistance and compressive strength) among other groups. Furthermore, increasing the titanium content to 80% in the composite increased the hardness; however, the wear resistance and compressive strength decreased.

10.
Nanomaterials (Basel) ; 10(4)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260230

RESUMO

Photoluminescent nanomaterials have immense potential for use in biological systems due to their excellent fluorescent properties and small size. Traditional semiconductor quantum dots are heavy-metal-based and can be highly toxic to living organisms, besides their poor photostability and low biocompatibility. Nano-sized carbon quantum dots and their surface-modified counterparts have shown improved characteristics for imaging purposes. We used 1,3, 6-trinitropyrene (TNP) and polyethylene glycol6000 (PEG6000) in a hydrothermal method to prepare functional polyethylene glycol6000/carbon nanodots (PEG6000/CDs) and analyzed their potential in fluorescent staining of different types of bacteria. Our results demonstrated that PEG6000/CDs stained the cell pole and septa of gram-positive bacteria B. Subtilis and B. thuringiensis but not those of gram-negative bacteria. The optimal concentration of these composite nanodots was approximately 100 ppm and exposure times varied across different bacteria. The PEG6000/CD composite had better photostability and higher resistance to photobleaching than the commercially available FM4-64. They could emit two wavelengths (red and green) when exposed to two different wavelengths. Therefore, they may be applicable as bioimaging molecules. They can also be used for differentiating different types of bacteria owing to their ability to differentially stain gram-positive and gram-negative bacteria.

11.
Mater Sci Eng C Mater Biol Appl ; 108: 110192, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923966

RESUMO

This study provided an eco-friendly manufacturing method for Ti implants by combining machining and surface treatment processes. Ti was machined by electrical discharge machining (EDM) in a water-based dielectric in order to reduce environmental impact and improve operational health. The feasibility of this eco-friendly EDM was evaluated by tested the bioactivity and cytocompatibility of the EDM-treated Ti and the commercially micro-arc oxidation (MAO)-treated Ti was used as a control group. Pulsed MAO and EDM treatments were applied on Ti in an aqueous solution containing hydroxyapatite (HA) with the same concentration (30 g/L) under the same voltage and treatment period. The two surface modification processes were compared from the aspects of surface composition, coating structure, and coating adhesion. Furthermore, in vitro bioactivity and cellular biocompatibility of the MAO- and EDM-treated Ti films were tested. Both treatments produced Ti oxide containing Ca and P on Ti, and the EDM-formed film possessed more Ca, with its Ca/P value closer to HA, as compared to the MAO-formed film. The MAO-formed films had micropores and nanopores in the middle region and film/substrate interface, respectively. Pores only existed on the surface of the EDM-formed films. The MAO-formed films were fractured, but the EDM-formed films maintained their original structure under tensile stress, tested according to the ASTM C633 standard. The bioactivity of the EDM-treated surface was higher than that of the MAO-treated and untreated Ti surface. After 24 h cell incubation, the EDM-treated surface exhibited a significantly higher number of cells than untreated Ti and the MAO-treated surface.


Assuntos
Materiais Revestidos Biocompatíveis , Técnicas Eletroquímicas , Teste de Materiais , Osteoblastos/metabolismo , Titânio , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Estudos de Viabilidade , Humanos , Osteoblastos/citologia , Oxirredução , Propriedades de Superfície , Titânio/química , Titânio/farmacologia
12.
Implant Dent ; 23(1): 74-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24445919

RESUMO

PURPOSE: This study developed calcium phosphate bone substitutes and their microstucture and in vitro cell response were evaluated in comparison with commercial hydroxyapatite (HA). MATERIALS: HA powder was ball-milled and then sintered to transfer into the calcium phosphate bulks (CPB). The density, hardness, and microstructure of the CPB were investigated. The viability and proliferation of MG63 osteoblast-like cells on the commercial HA and the CPB were evaluated. RESULTS: The x-ray diffraction confirmed that the CPB consisted of α-tricalcium phosphate (α-TCP), CaO, and HA. The hardness, density, and α-TCP-to-HA ratio of the CPB decreased when increasing the sintering duration. Cell tests demonstrated that the CPB exhibited an earlier cell-spread response than the commercial HA. CONCLUSIONS: This study demonstrated that a phase transformation of HA into α-TCP and CaO was achieved by sintering. The cell tests indicated that the CPB has favorable in vitro cellular performance, which implied that it presented potential as bone substitute.


Assuntos
Substitutos Ósseos/metabolismo , Fosfatos de Cálcio , Durapatita , Linhagem Celular Tumoral , Humanos , Osteoblastos/metabolismo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA