Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(11): 3045-3060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38576168

RESUMO

Dual tasks (DTs) combining walking with a cognitive task can cause various levels of cognitive-motor interference, depending on which brain resources are recruited in each case. However, the brain activation and functional connectivity underlying cognitive-motor interferences remain to be elucidated. Therefore, this study investigated the neural correlation during different DT conditions in 40 healthy young adults (mean age: 27.53 years, 28 women). The DTs included walking during subtraction or N-Back tasks. Cognitive-motor interference was calculated, and brain activation and functional connectivity were analysed. Portable functional near-infrared spectroscopy was utilized to monitor haemodynamics in the prefrontal cortex (PFC), motor cortex and parietal cortex during each task. Walking interference (decrease in walking speed during DT) was greater than cognitive interference (decrease in cognitive performance during DT), regardless of the type of task. Brain activation in the bilateral PFC and parietal cortex was greater for walking during subtraction than for standing subtraction. Furthermore, brain activation was higher in the bilateral motor and parietal and PFCs for walking during subtraction than for walking alone, but only increased in the PFC for walking during N-Back. Coherence between the bilateral lateral PFC and between the left lateral PFC and left motor cortex was significantly greater for walking during 2-Back than for walking. The PFC, a critical brain region for organizing cognitive and motor functions, played a crucial role in integrating information coming from multiple brain networks required for completing DTs. Therefore, the PFC could be a potential target for the modulation and improvement of cognitive-motor functions during neurorehabilitation.


Assuntos
Cognição , Desempenho Psicomotor , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Feminino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Adulto , Cognição/fisiologia , Desempenho Psicomotor/fisiologia , Adulto Jovem , Caminhada/fisiologia , Córtex Motor/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Parietal/fisiologia
2.
Brain Res ; 1833: 148868, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38519008

RESUMO

Meningeal lymphatic vessels (MLVs) have crucial roles in removing metabolic waste and toxic proteins from the brain and transporting them to the periphery. Aged mice show impaired meningeal lymphatic function. Nevertheless, as the disease progresses, and significant pathological changes manifest in the brain, treating the condition becomes increasingly challenging. Therefore, investigating the alterations in the structure and function of MLVs in the early stages of aging is critical for preventing age-related central nervous system degenerative diseases. We detected the structure and function of MLVs in young, middle-aged, and aged mice. Middle-aged mice, compared with young and aged mice, showed enhanced meningeal lymphatic function along with MLV expansion and performed better in the Y maze test. Moreover, age-related changes in meningeal lymphatic function were closely associated with vascular endothelial growth factor-C (VEGF-C) expression in the brain cortex. Our data suggested that the cerebral cortex may serve as a target for VEGF-C supplementation to ameliorate meningeal lymphatic dysfunction, thus providing a new strategy for preventing age-related central nervous system diseases.


Assuntos
Envelhecimento , Vasos Linfáticos , Meninges , Fator C de Crescimento do Endotélio Vascular , Animais , Masculino , Camundongos , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Córtex Cerebral/metabolismo , Vasos Linfáticos/metabolismo , Meninges/metabolismo , Camundongos Endogâmicos C57BL , Fator C de Crescimento do Endotélio Vascular/metabolismo
3.
Neuroimage ; 289: 120545, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367652

RESUMO

OBJECTIVE: Dual task (DT) is a commonly used paradigm indicative of executive functions. Brain activities during DT walking is usually measured by portable functional near infrared spectroscopy (fNIRS). Previous studies focused on cortical activation in prefrontal cortex and overlooked other brain regions such as sensorimotor cortices. This study is aimed at investigating the modulations of cortical activation and brain network efficiency in multiple brain regions from single to dual tasks with different complexities and their relationships with DT performance. METHODS: Forty-two healthy adults [12 males; mean age: 27.7 (SD=6.5) years] participated in this study. Participants performed behavioral tasks with portable fNIRS simultaneous recording. There were three parts of behavioral tasks: cognitive tasks while standing (serial subtraction of 3's and 7's), walking alone and DT (walk while subtraction, including serial subtraction of 3's and 7's). Cognitive cost, walking cost and cost sum (i.e., sum of cognitive and walking costs) were calculated for DT. Cortical activation, local and global network efficiency were calculated for each task. RESULTS: The cognitive cost was greater and the walking cost was less during DT with subtraction 3's compared with 7's (P's = 0.032 and 0.019, respectively). Cortical activation and network efficiency were differentially modulated among single and dual tasks (P's < 0.05). Prefrontal activation during DT was positively correlated with DT costs, while network efficiency was negatively correlated with DT costs (P's < 0.05). CONCLUSIONS: Our results revealed prefrontal over-activation and reduced network efficiency in individuals with poor DT performance. Our findings suggest that reduced network efficiency could be a possible mechanism contributing to poor DT performance, which is accompanied by compensatory prefrontal over-activation.


Assuntos
Córtex Pré-Frontal , Espectroscopia de Luz Próxima ao Infravermelho , Adulto , Masculino , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Função Executiva/fisiologia , Caminhada/fisiologia , Análise e Desempenho de Tarefas , Marcha
4.
J Neurochem ; 166(3): 560-571, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37282785

RESUMO

The glymphatic system is a newly discovered perivascular network where cerebrospinal fluid mixes with interstitial fluid, facilitating clearance of protein solutes and metabolic waste from the parenchyma. The process is strictly dependent on water channel aquaporin-4 (AQP4) expressed on the perivascular astrocytic end-feet. Various factors, such as noradrenaline levels related to the arousal state, influence clearance efficiency, highlighting the possibility that other neurotransmitters additionally modulate this process. To date, the specific role of γ-aminobutyric acid (GABA) in the glymphatic system remains unknown. We used C57BL/6J mice to observe the regulatory effect of GABA on glymphatic pathway by administering a cerebrospinal fluid tracer containing GABA or its GABAA receptor (GABAA R) antagonist through cisterna magna injection. Then, we employed an AQP4 knockout mouse model to explore the regulatory effects of GABA on glymphatic drainage and further study whether transcranial magnetic stimulation-continuous theta burst stimulation (cTBS) could regulate the glymphatic pathway through the GABA system. Our data showed that GABA promotes glymphatic clearance in an AQP4-dependent manner by activating the GABAA R. Furthermore, cTBS was found to modulate the glymphatic pathway by activating the GABA system. Accordingly, we propose that regulating the GABA system by cTBS could modulate glymphatic clearance and provide new insight for clinical prevention and treatment of abnormal protein deposition-related diseases.


Assuntos
Encéfalo , Sistema Glinfático , Animais , Camundongos , Aquaporina 4/metabolismo , Encéfalo/metabolismo , Líquido Extracelular/metabolismo , Ácido gama-Aminobutírico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Front Neurosci ; 17: 1131862, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937674

RESUMO

Objective: The ability of motor-inhibitory control is critical in daily life. The physiological mechanisms underlying motor inhibitory control deficits remain to be elucidated. Beta band oscillations have been suggested to be related to motor performance, but whether they relate to motor-inhibitory control remains unclear. This study is aimed at systematically investigating the relationship between beta band oscillations and motor-inhibitory control to determine whether beta band oscillations were related to the ability of motor-inhibitory control. Methods: We studied 30 healthy young adults (age: 21.6 ± 1.5 years). Stop-signal reaction time (SSRT) was derived from stop signal task, indicating the ability of motor-inhibitory control. Resting-state electroencephalography (EEG) was recorded for 12 min. Beta band power and functional connectivity (including global efficiency) were calculated. Correlations between beta band oscillations and SSRT were performed. Results: Beta band EEG power in left and right motor cortex (MC), right somatosensory cortex (SC), and right inferior frontal cortex (IFC) was positively correlated with SSRT (P's = 0.031, 0.021, 0.045, and 0.015, respectively). Beta band coherence between bilateral MC, SC, and IFC was also positively correlated with SSRT (P's < 0.05). Beta band global efficiency was positively correlated with SSRT (P = 0.01). Conclusion: This is the first study to investigate the relationship between resting-state cortical beta oscillations and response inhibition. Our findings revealed that individuals with better ability of motor inhibitory control tend to have less cortical beta band power and functional connectivity. This study has clinical significance on the underlying mechanisms of motor inhibitory control deficits.

6.
Mediators Inflamm ; 2022: 2140524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032783

RESUMO

Amyloid-ß (Aß) deposition plays a crucial role in the occurrence and development of Alzheimer's disease (AD), and impaired Aß clearance is the leading cause of Aß deposition. Recently, studies have found that the glymphatic system performs similar functions to the peripheral lymphatic system. Glymphatic fluid transport mainly consists of cerebrospinal fluid (CSF) entering the brain from the paravascular space (PVS) by penetrating arteries and CSF and interstitial fluid exchanging mediated by aquaporin-4 (AQP4). This system promotes the drainage of interstitial fluid (ISF) in the parenchyma and removes metabolic waste, including Aß, in the brain. Glymphatic system dysfunction plays an essential role in the occurrence and progression of AD. Regulation of glymphatic fluid transport may be a critical target for AD therapy. This study explored the regulatory effects of continuous theta-burst stimulation (CTBS) on the glymphatic system in APPswe/PS1dE9 (APP/PS1) mice with two-photon imaging. The results demonstrated that CTBS could increase glymphatic fluid transport, especially CSF and ISF exchange, mediated by improved AQP4 polarization. In addition, the accelerated glymphatic pathway reduced Aß deposition and enhanced spatial memory cognition. It provided new insight into the clinical prevention and treatment of Aß deposition-related diseases.


Assuntos
Doença de Alzheimer , Sistema Glinfático , Peptídeos beta-Amiloides , Animais , Aquaporina 4 , Encéfalo , Líquido Extracelular , Camundongos , Estimulação Magnética Transcraniana
7.
Pathol Res Pract ; 215(2): 343-346, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30583814

RESUMO

BACKGROUND: Hepatitis B virus X-interacting protein (HBXIP) is associated with a variety of tumors. The purpose of this study was to investigate the clinicopathological significance of HBXIP expression in pancreatic ductal adenocarcinoma (PDAC) and to explore its potential as a biomarker for PDAC. METHODS: Immunohistochemical (IHC) staining was performed on 126 PDAC tissues, 36 paraneoplastic tissues and 22 normal pancreatic tissues. The relationship between high levels of HBXIP expression and pathological features of PDAC patients was evaluated by chi-squared values. RESULTS: The positive rate of HBXIP protein in PDAC tissues was 85.7% (108/126), which was significantly higher than that of adjacent pancreatic tissue (41.7%, 15/36) and normal pancreas (18.2%, 4/22). In addition, strong positive expression of HBXIP was associated with tumor size, positive lymph node metastasis, clinical stage and 80-month overall survival. Patient's age, gender, degree of differentiation, Ki-67 expression index, and calcification were, however, not associated with high levels of HBXIP expression. CONCLUSIONS: We present association between HBXIP expression and the pathological features of patients with PDAC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Adulto , Idoso , Biomarcadores Tumorais/análise , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidade , Prognóstico , Regulação para Cima , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA