Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296204

RESUMO

This study proposes different standalone models viz: Elman neural network (ENN), Boosted Tree algorithm (BTA), and f relevance vector machine (RVM) for modeling arsenic (As (mg/kg)) and zinc (Zn (mg/kg)) in marine sediments owing to anthropogenic activities. A heuristic algorithm based on the potential of RVM and a flower pollination algorithm (RVM-FPA) was developed to improve the prediction performance. Several evaluation indicators and graphical methods coupled with visualized cumulative probability function (CDF) were used to evaluate the accuracy of the models. Akaike (AIC) and Schwarz (SCI) information criteria based on Dickey-Fuller (ADF) and Philip Perron (PP) tests were introduced to check the reliability and stationarity of the data. The prediction performance in the verification phase indicated that RVM-M2 (PBAIS = -o.0465, MAE = 0.0335) and ENN-M2 (PBAIS = 0.0043, MAE = 0.0322) emerged as the best model for As (mg/kg) and Zn (mg/kg), respectively. In contrast with the standalone approaches, the simulated hybrid RVM-FPA proved merit and the most reliable, with a 5 % and 18 % predictive increase for As (mg/kg) and Zn (mg/kg), respectively. The study's findings validated the potential for estimating complex HMs through intelligent data-driven models and heuristic optimization. The study also generated valuable insights that can inform the decision-makers and stockholders for environmental management strategies.


Assuntos
Algoritmos , Metais Pesados , Reprodutibilidade dos Testes , Aprendizado de Máquina , Sedimentos Geológicos
2.
Neurosci Res ; 188: 51-67, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36152918

RESUMO

Sleep scoring is one of the primary tasks for the classification of sleep stages in Electroencephalogram (EEG) signals. Manual visual scoring of sleep stages is time-consuming as well as being dependent on the experience of a highly qualified sleep expert. This paper aims to address these issues by developing a new method to automatically classify sleep stages in EEG signals. In this research, a robust method has been presented based on the clustering approach, coupled with probability distribution features, to identify six sleep stages with the use of EEG signals. Using this method, each 30-second EEG signal is firstly segmented into small epochs and then each epoch is divided into 60 sub-segments. Each sub-segment is decomposed into five levels by using a discrete wavelet transform (DWT) to obtain the approximation and detailed coefficient. The wavelet coefficient of each level is clustered using the k-means algorithm. Subsequently, features are extracted based on the probability distribution for each wavelet coefficient. The extracted features then are forwarded to the least squares support vector machine classifier (LS-SVM) to identify sleep stages. Comparisons with several existing methods are also made in this study. The proposed method for the classification of the sleep stages achieves an average accuracy rate of 97.4%. It can be an effective tool for sleep stages classification and can be useful for doctors and neurologists for diagnosing sleep disorders.


Assuntos
Eletroencefalografia , Sono , Eletroencefalografia/métodos , Fases do Sono , Probabilidade , Algoritmos , Análise por Conglomerados
3.
Brain Res ; 1779: 147777, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999060

RESUMO

The detection of epileptic seizures from electroencephalogram (EEG) signals is traditionally performed by clinical experts through visual inspection. It is a long process, is error prone, and requires a highly trained expert. In this research, a new method is presented for seizure classification for EEG signals using a dual-tree complex wavelet transform (DT-CWT) and fast Fourier transform (FFT) coupled with a least square support vector machine (LS-SVM) classifier. In this method, each EEG signal is divided into four segments. Each segment is further split into smaller sub-segments. The DT-CWT is applied to decompose each sub-segment into detailed and approximation coefficients (real and imaginary parts). The obtained coefficients by the DT-CWT at each decomposition level are passed through an FFT to identify the relevant frequency bands. Finally, a set of effective features are extracted from the sub-segments, and are then forwarded to the LS-SVM classifier to classify epileptic EEGs. In this paper, two epileptic EEG databases from Bonn and Bern Universities are used to evaluate the extracted features using the proposed method. The experimental results demonstrate that the method obtained an average accuracy of 97.7% and 96.8% for the Bonn and Bern databases, respectively. The results prove that the proposed DT-CWT and FFT based features extraction is an effective way to extract discriminative information from brain signals. The obtained results are also compared to those by k-means and Naïve Bayes classifiers as well as with the results from the previous methods reported for classifying epileptic seizures and identifying the focal and non-focal EEG signals. The obtained results show that the proposed method outperforms the others and it is effective in detecting epileptic seziures in EEG signals. The technique can be adopted to aid neurologists to better diagnose neurological disorders and for an early seizure warning system.


Assuntos
Algoritmos , Córtex Cerebral/fisiopatologia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Convulsões/diagnóstico , Processamento de Sinais Assistido por Computador , Adulto , Eletroencefalografia/normas , Análise de Fourier , Humanos , Análise de Ondaletas
4.
Environ Sci Pollut Res Int ; 29(24): 35841-35861, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35061183

RESUMO

Natural streams longitudinal dispersion coefficient (Kx) is an essential indicator for pollutants transport and its determination is very important. Kx is influenced by several parameters, including river hydraulic geometry, sediment properties, and other morphological characteristics, and thus its calculation is a highly complex engineering problem. In this research, three relatively explored machine learning (ML) models, including Random Forest (RF), Gradient Boosting Decision Tree (GTB), and XGboost-Grid, were proposed for the Kx determination. The modeling scheme on building the prediction matrix was adopted from the well-established literature. Several input combinations were tested for better predictability performance for the Kx. The modeling performance was tested based on the data division for the training and testing (70-30% and 80-20%). Based on the attained modeling results, XGboost-Grid reported the best prediction results over the training and testing phase compared to RF and GTB models. The development of the newly established machine learning model revealed an excellent computed-aided technology for the Kx simulation.


Assuntos
Aprendizado de Máquina , Rios , Poluição da Água , Estados Unidos , Poluição da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA