Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1275744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352041

RESUMO

Vanishing white matter (VWM) is a devastating autosomal recessive leukodystrophy, resulting in neurological deterioration and premature death, and without curative treatment. Pathogenic hypomorphic variants in subunits of the eukaryotic initiation factor 2B (eIF2B) cause VWM. eIF2B is required for regulating the integrated stress response (ISR), a physiological response to cellular stress. In patients' central nervous system, reduced eIF2B activity causes deregulation of the ISR. In VWM mouse models, the extent of ISR deregulation correlates with disease severity. One approach to restoring eIF2B activity is by inhibition of GSK3ß, a kinase that phosphorylates eIF2B and reduces its activity. Lithium, an inhibitor of GSK3ß, is thus expected to stimulate eIF2B activity and ameliorate VWM symptoms. The effects of lithium were tested in zebrafish and mouse VWM models. Lithium improved motor behavior in homozygous eif2b5 mutant zebrafish. In lithium-treated 2b4he2b5ho mutant mice, a paradoxical increase in some ISR transcripts was found. Furthermore, at the dosage tested, lithium induced significant polydipsia in both healthy controls and 2b4he2b5ho mutant mice and did not increase the expression of other markers of lithium efficacy. In conclusion, lithium is not a drug of choice for further development in VWM based on the limited or lack of efficacy and significant side-effect profile.

2.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171595

RESUMO

The leukodystrophy vanishing white matter (VWM) is characterized by chronic and episodic acute neurological deterioration. Curative treatment is presently unavailable. Pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B) cause VWM and deregulate the integrated stress response (ISR). Previous studies in VWM mouse models showed that several ISR-targeting compounds ameliorate clinical and neuropathological disease hallmarks. It is unclear which ISR components are suitable therapeutic targets. In this study, effects of 4-phenylbutyric acid, tauroursodeoxycholic acid, or pridopidine (PDPD), with ISR targets upstream or downstream of eIF2B, were assessed in VWM mice. In addition, it was found that the composite ataxia score represented motor decline of VWM mice more accurately than the previously used neuroscore. 4-phenylbutyric acid and tauroursodeoxycholic acid did not improve VWM disease hallmarks, whereas PDPD had subtle beneficial effects on motor skills. PDPD alone does not suffice as treatment in VWM mice but may be considered for combination therapy. Also, treatments aimed at ISR components upstream of eIF2B do not improve chronic neurological deterioration; effects on acute episodic decline remain to be investigated.


Assuntos
Fator de Iniciação 2B em Eucariotos , Substância Branca , Camundongos , Animais , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Substância Branca/patologia , Destreza Motora , Modelos Animais de Doenças
3.
Ann Clin Transl Neurol ; 9(8): 1147-1162, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35778832

RESUMO

OBJECTIVE: Vanishing white matter (VWM) is a leukodystrophy, characterized by stress-sensitive neurological deterioration and premature death. It is currently without curative treatment. It is caused by bi-allelic pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B). eIF2B is essential for the regulation of the integrated stress response (ISR), a physiological response to cellular stress. Preclinical studies on VWM mouse models revealed that deregulated ISR is key in the pathophysiology of VWM and an effective treatment target. Guanabenz, an α2-adrenergic agonist, attenuates the ISR and has beneficial effects on VWM neuropathology. The current study aimed at elucidating guanabenz's disease-modifying potential and mechanism of action in VWM mice. Sephin1, an ISR-modulating guanabenz analog without α2-adrenergic agonistic properties, was included to separate effects on the ISR from α2-adrenergic effects. METHODS: Wild-type and VWM mice were subjected to placebo, guanabenz or sephin1 treatments. Effects on clinical signs, neuropathology, and ISR deregulation were determined. Guanabenz's and sephin1's ISR-modifying effects were tested in cultured cells that expressed or lacked the α2-adrenergic receptor. RESULTS: Guanabenz improved clinical signs, neuropathological hallmarks, and ISR regulation in VWM mice, but sephin1 did not. Guanabenz's effects on the ISR in VWM mice were not replicated in cell cultures and the contribution of α2-adrenergic effects on the deregulated ISR could therefore not be assessed. INTERPRETATION: Guanabenz proved itself as a viable treatment option for VWM. The exact mechanism through which guanabenz exerts its ameliorating impact on VWM requires further studies. Sephin1 is not simply a guanabenz replacement without α2-adrenergic effects.


Assuntos
Guanabenzo , Substância Branca , Adrenérgicos , Animais , Fator de Iniciação 2B em Eucariotos/genética , Guanabenzo/análogos & derivados , Guanabenzo/farmacologia , Camundongos , Substância Branca/patologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-33234720

RESUMO

MS is regarded as a disease of the CNS where a combination of demyelination, inflammation, and axonal degeneration results in neurologic disability. However, various studies have also shown that the peripheral nervous system (PNS) can be involved in MS, expanding the consequences of this disorder outside the brain and spinal cord, and providing food for thought to the still unanswered questions about MS origin and treatment. Here, we review the emerging concept of PNS involvement in MS by looking at it from a clinical, molecular, and biochemical point of view. Clinical, pathologic, electrophysiologic, and imaging studies give evidence that the PNS is functionally affected during MS and suggest that the disease might be part of a spectrum of demyelinating disorders instead of being a distinct entity. At the molecular level, similarities between the anatomic structure of the myelin and its interaction with axons in CNS and PNS are evident. In addition, a number of biochemical alterations that affect the myelin during MS can be assumed to be shared between CNS and PNS. Involvement of the PNS as a relevant disease target in MS pathology may have consequences for reaching the diagnosis and for therapeutic approaches of patients with MS. Hence, future MS studies should pay attention to the involvement of the PNS, i.e., its myelin, in MS pathogenesis, which could advance MS research.


Assuntos
Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Sistema Nervoso Periférico/patologia , Animais , Humanos
5.
Elife ; 92020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293562

RESUMO

The development of a polarized neuron relies on the selective transport of proteins to axons and dendrites. Although it is well known that the microtubule cytoskeleton has a central role in establishing neuronal polarity, how its specific organization is established and maintained is poorly understood. Using the in vivo model system Caenorhabditis elegans, we found that the highly conserved UNC-119 protein provides a link between the membrane-associated Ankyrin (UNC-44) and the microtubule-associated CRMP (UNC-33). Together they form a periodic membrane-associated complex that anchors axonal and dendritic microtubule bundles to the cortex. This anchoring is critical to maintain microtubule organization by opposing kinesin-1 powered microtubule sliding. Disturbing this molecular complex alters neuronal polarity and causes strong developmental defects of the nervous system leading to severely paralyzed animals.


Assuntos
Polaridade Celular/fisiologia , Citoesqueleto/fisiologia , Microtúbulos/fisiologia , Neurônios/fisiologia , Animais , Anquirinas/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiologia , Células Cultivadas , Córtex Cerebral/fisiologia , Locomoção , Fatores de Crescimento Neural/fisiologia , Proteínas do Tecido Nervoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA