Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
PLoS Comput Biol ; 20(4): e1011550, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635836

RESUMO

Prioritization or ranking of different cell types in a single-cell RNA sequencing (scRNA-seq) framework can be performed in a variety of ways, some of these include: i) obtaining an indication of the proportion of cell types between the different conditions under study, ii) counting the number of differentially expressed genes (DEGs) between cell types and conditions in the experiment or, iii) prioritizing cell types based on prior knowledge about the conditions under study (i.e., a specific disease). These methods have drawbacks and limitations thus novel methods for improving cell ranking are required. Here we present a novel methodology that exploits prior knowledge in combination with expert-user information to accentuate cell types from a scRNA-seq analysis that yield the most biologically meaningful results with respect to a disease under study. Our methodology allows for ranking and prioritization of cell types based on how well their expression profiles relate to the molecular mechanisms and drugs associated with a disease. Molecular mechanisms, as well as drugs, are incorporated as prior knowledge in a standardized, structured manner. Cell types are then ranked/prioritized based on how well results from data-driven analysis of scRNA-seq data match the predefined prior knowledge. In additional cell-cell communication perturbations between disease and control networks are used to further prioritize/rank cell types. Our methodology has substantial advantages to more traditional cell ranking techniques and provides an informative complementary methodology that utilizes prior knowledge in a rapid and automated manner, that has previously not been attempted by other studies. The current methodology is also implemented as an R package entitled Single Cell Ranking Analysis Toolkit (scRANK) and is available for download and installation via GitHub (https://github.com/aoulas/scRANK).


Assuntos
Biologia Computacional , Análise de Sequência de RNA , Análise de Célula Única , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Humanos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , RNA-Seq/métodos , Algoritmos , Software
2.
NAR Genom Bioinform ; 5(2): lqad049, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37260512

RESUMO

Bacterial Wars (BW) is a network-based tool that applies a two-step pipeline to display information on the competition of bacterial species found in the same microbiome. It utilizes antimicrobial peptide (AMP) sequence similarities to obtain a relationship between species. The working hypothesis (putative AMP defense) is that friendly species share sequence similarity among the putative AMPs of their proteomes and are therefore immune to their AMPs. This may not happen in competing bacterial species with dissimilar putative AMPs. Similarities in the putative AMPs of bacterial proteomes may be thus used to predict predominance. The tool provides insights as to which bacterial species are more likely to 'die' in a competing environmental niche.

3.
Front Bioinform ; 3: 1157956, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959975

RESUMO

Metagenomics has enabled accessing the genetic repertoire of natural microbial communities. Metagenome shotgun sequencing has become the method of choice for studying and classifying microorganisms from various environments. To this end, several methods have been developed to process and analyze the sequence data from raw reads to end-products such as predicted protein sequences or families. In this article, we provide a thorough review to simplify such processes and discuss the alternative methodologies that can be followed in order to explore biodiversity at the protein family level. We provide details for analysis tools and we comment on their scalability as well as their advantages and disadvantages. Finally, we report the available data repositories and recommend various approaches for protein family annotation related to phylogenetic distribution, structure prediction and metadata enrichment.

4.
Hum Genomics ; 16(1): 39, 2022 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-36117207

RESUMO

BACKGROUND: Clinical classification of autistic patients based on current WHO criteria provides a valuable but simplified depiction of the true nature of the disorder. Our goal is to determine the biology of the disorder and the ASD-associated genes that lead to differences in the severity and variability of clinical features, which can enhance the ability to predict clinical outcomes. METHOD: Novel Whole Exome Sequencing data from children (n = 33) with ASD were collected along with extended cognitive and linguistic assessments. A machine learning methodology and a literature-based approach took into consideration known effects of genetic variation on the translated proteins, linking them with specific ASD clinical manifestations, namely non-verbal IQ, memory, attention and oral language deficits. RESULTS: Linear regression polygenic risk score results included the classification of severe and mild ASD samples with a 81.81% prediction accuracy. The literature-based approach revealed 14 genes present in all sub-phenotypes (independent of severity) and others which seem to impair individual ones, highlighting genetic profiles specific to mild and severe ASD, which concern non-verbal IQ, memory, attention and oral language skills. CONCLUSIONS: These genes can potentially contribute toward a diagnostic gene-set for determining ASD severity. However, due to the limited number of patients in this study, our classification approach is mostly centered on the prediction and verification of these genes and does not hold a diagnostic nature per se. Substantial further experimentation is required to validate their role as diagnostic markers. The use of these genes as input for functional analysis highlights important biological processes and bridges the gap between genotype and phenotype in ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno Autístico/complicações , Transtorno Autístico/diagnóstico , Biologia Computacional , Patrimônio Genético , Humanos , Fenótipo
5.
RNA Biol ; 19(1): 507-518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35388741

RESUMO

Muscular dystrophies are a group of rare and severe inherited disorders mainly affecting the muscle tissue. Duchene Muscular Dystrophy, Myotonic Dystrophy types 1 and 2, Limb Girdle Muscular Dystrophy and Facioscapulohumeral Muscular Dystrophy are some of the members of this family of disorders. In addition to the current diagnostic tools, there is an increasing interest for the development of novel non-invasive biomarkers for the diagnosis and monitoring of these diseases. miRNAs are small RNA molecules characterized by high stability in blood thus making them ideal biomarker candidates for various diseases. In this study, we present the first genome-wide next-generation small RNA sequencing in serum samples of five different types of muscular dystrophy patients and healthy individuals. We identified many small RNAs including miRNAs, lncRNAs, tRNAs, snoRNAs and snRNAs, that differentially discriminate the muscular dystrophy patients from the healthy individuals. Further analysis of the identified miRNAs showed that some miRNAs can distinguish the muscular dystrophy patients from controls and other miRNAs are specific to the type of muscular dystrophy. Bioinformatics analysis of the target genes for the most significant miRNAs and the biological role of these genes revealed different pathways that the dysregulated miRNAs are involved in each type of muscular dystrophy investigated. In conclusion, this study shows unique signatures of small RNAs circulating in five types of muscular dystrophy patients and provides a useful resource for future studies for the development of miRNA biomarkers in muscular dystrophies and for their involvement in the pathogenesis of the disorders.


Assuntos
MicroRNAs , Distrofias Musculares , Distrofia Miotônica , Biomarcadores , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , Distrofias Musculares/diagnóstico , Distrofias Musculares/genética
6.
Neuromuscul Disord ; 32(4): 332-346, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393236

RESUMO

Muscular dystrophies are a group of disorders that cause progressive muscle weakness. There is an increasing interest for the development of biomarkers for these disorders and specifically for Duchene Muscular Dystrophy. Limited research however, has been performed on the biomarkers' development for the most rare muscular dystrophies, like the Facioscapulohumeral Muscular Dystrophy, Limb-Girdle Muscular Dystrophy and Myotonic Dystrophy type 2. Here, we aimed to identify novel serum-based miRNA biomarkers for these rare muscular dystrophies, through high-throughput next-generation RNA sequencing. We identified many miRNAs that associate with muscular dystrophy patients compared to controls. Based on a series of selection criteria, the two best candidate miRNAs for each of these disorders were chosen and validated in a larger number of patients. Our results showed that miR-223-3p and miR-206 are promising serum-based biomarkers for Facioscapulohumeral Muscular Dystrophy type 1, miR-143-3p and miR-486-3p for Limb-Girdle Muscular Dystrophy type 2A whereas miR-363-3p and miR-25-3p associate with Myotonic Dystrophy type 2. Some of the identified miRNAs were significantly elevated in the serum of the patients compared to controls, whereas some others were lower. In conclusion, we provide new evidence that certain circulating miRNAs may be used as biomarkers for three types of rare muscular dystrophies.


Assuntos
MicroRNAs , Distrofia Muscular do Cíngulo dos Membros , Distrofia Muscular Facioescapuloumeral , Distrofia Miotônica , Biomarcadores/sangue , Humanos , MicroRNAs/sangue , MicroRNAs/genética , Distrofia Muscular do Cíngulo dos Membros/sangue , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular Facioescapuloumeral/sangue , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Miotônica/sangue , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/genética
7.
Cell Biosci ; 12(1): 29, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277195

RESUMO

BACKGROUND: Spastic ataxias (SAs) encompass a group of rare and severe neurodegenerative diseases, characterized by an overlap between ataxia and spastic paraplegia clinical features. They have been associated with pathogenic variants in a number of genes, including GBA2. This gene codes for the non-lysososomal ß-glucosylceramidase, which is involved in sphingolipid metabolism through its catalytic role in the degradation of glucosylceramide. However, the mechanism by which GBA2 variants lead to the development of SA is still unclear. METHODS: In this work, we perform next-generation RNA-sequencing (RNA-seq), in an attempt to discover differentially expressed genes (DEGs) in lymphoblastoid, fibroblast cell lines and induced pluripotent stem cell-derived neurons derived from patients with SA, homozygous for the GBA2 c.1780G > C missense variant. We further exploit DEGs in pathway analyses in order to elucidate candidate molecular mechanisms that are implicated in the development of the GBA2 gene-associated SA. RESULTS: Our data reveal a total of 5217 genes with significantly altered expression between patient and control tested tissues. Furthermore, the most significant extracted pathways are presented and discussed for their possible role in the pathogenesis of the disease. Among them are the oxidative stress, neuroinflammation, sphingolipid signaling and metabolism, PI3K-Akt and MAPK signaling pathways. CONCLUSIONS: Overall, our work examines for the first time the transcriptome profiles of GBA2-associated SA patients and suggests pathways and pathway synergies that could possibly have a role in SA pathogenesis. Lastly, it provides a list of DEGs and pathways that could be further validated towards the discovery of disease biomarkers.

8.
Front Microbiol ; 12: 752674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867874

RESUMO

The predominance of bacterial taxa in the gut, was examined in view of the putative antimicrobial peptide sequences (AMPs) within their proteomes. The working assumption was that compatible bacteria would share homology and thus immunity to their putative AMPs, while competing taxa would have dissimilarities in their proteome-hidden AMPs. A network-based method ("Bacterial Wars") was developed to handle sequence similarities of predicted AMPs among UniProt-derived protein sequences from different bacterial taxa, while a resulting parameter ("Die" score) suggested which taxa would prevail in a defined microbiome. T he working hypothesis was examined by correlating the calculated Die scores, to the abundance of bacterial taxa from gut microbiomes from different states of health and disease. Eleven publicly available 16S rRNA datasets and a dataset from a full shotgun metagenomics served for the analysis. The overall conclusion was that AMPs encrypted within bacterial proteomes affected the predominance of bacterial taxa in chemospheres.

9.
BMC Genom Data ; 22(1): 48, 2021 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-34773976

RESUMO

BACKGROUND: This study aims to characterize SARS-CoV-2 mutations which are primarily prevalent in the Cypriot population. Moreover, using computational approaches, we assess whether these mutations are associated with changes in viral virulence. METHODS: We utilize genetic data from 144 sequences of SARS-CoV-2 strains from the Cypriot population obtained between March 2020 and January 2021, as well as all data available from GISAID. We combine this with countries' regional information, such as deaths and cases per million, as well as COVID-19-related public health austerity measure response times. Initial indications of selective advantage of Cyprus-specific mutations are obtained by mutation tracking analysis. This entails calculating specific mutation frequencies within the Cypriot population and comparing these with their prevalence world-wide throughout the course of the pandemic. We further make use of linear regression models to extrapolate additional information that may be missed through standard statistical analysis. RESULTS: We report a single mutation found in the ORF1ab gene (nucleotide position 18,440) that appears to be significantly enriched within the Cypriot population. The amino acid change is denoted as S6059F, which maps to the SARS-CoV-2 NSP14 protein. We further analyse this mutation using regression models to investigate possible associations with increased deaths and cases per million. Moreover, protein structure prediction tools show that the mutation infers a conformational change to the protein that significantly alters its structure when compared to the reference protein. CONCLUSIONS: Investigating Cyprus-specific mutations for SARS-CoV-2 can lead to a better understanding of viral pathogenicity. Researching these mutations can generate potential links between viral-specific mutations and the unique genomics of the Cypriot population. This can not only lead to important findings from which to battle the pandemic on a national level, but also provide insights into viral virulence worldwide.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/virologia , Chipre , Exorribonucleases/genética , Humanos , Mutação , Filogenia , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética
10.
Mol Ther Methods Clin Dev ; 23: 169-183, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34703840

RESUMO

Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy, primarily characterized by muscle wasting and weakness. Many biomarkers already exist in the rapidly developing biomarker research field that aim to improve patients' care. Limited work, however, has been performed on rare diseases, including DM1. We have previously shown that specific microRNAs (miRNAs) can be used as potential biomarkers for DM1 progression. In this report, we aimed to identify novel serum-based biomarkers for DM1 through high-throughput next-generation sequencing. A number of miRNAs were identified that are able to distinguish DM1 patients from healthy individuals. Two miRNAs were selected, and their association with the disease was validated in a larger panel of patients. Further investigation of miR-223-3p, miR-24-3p, and the four previously identified miRNAs, miR-1-3p, miR-133a-3p, miR-133b-3p, and miR-206-3p, showed elevated levels in a DM1 mouse model for all six miRNAs circulating in the serum compared to healthy controls. Importantly, the levels of miR-223-3p, but not the other five miRNAs, were found to be significantly downregulated in five skeletal muscles and heart tissues of DM1 mice compared to controls. This result provides significant evidence for its involvement in disease manifestation.

11.
PLoS One ; 16(7): e0248792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34288921

RESUMO

Whole genome sequencing of viral specimens following molecular diagnosis is a powerful analytical tool of molecular epidemiology that can critically assist in resolving chains of transmission, identifying of new variants or assessing pathogen evolution and allows a real-time view into the dynamics of a pandemic. In Cyprus, the first two cases of COVID-19 were identified on March 9, 2020 and since then 33,567 confirmed cases and 230 deaths were documented. In this study, viral whole genome sequencing was performed on 133 SARS-CoV-2 positive samples collected between March 2020 and January 2021. Phylogenetic analysis was conducted to evaluate the genomic diversity of circulating SARS-CoV-2 lineages in Cyprus. 15 different lineages were identified that clustered into three groups associated with the spring, summer and autumn/winter wave of SARS-CoV-2 incidence in Cyprus, respectively. The majority of the Cypriot samples belonged to the B.1.258 lineage first detected in September that spread rapidly and largely dominated the autumn/winter wave with a peak prevalence of 86% during the months of November and December. The B.1.1.7 UK variant (VOC-202012/01) was identified for the first time at the end of December and spread rapidly reaching 37% prevalence within one month. Overall, we describe the changing pattern of circulating SARS-CoV-2 lineages in Cyprus since the beginning of the pandemic until the end of January 2021. These findings highlight the role of importation of new variants through travel towards the emergence of successive waves of incidence in Cyprus and demonstrate the importance of genomic surveillance in determining viral genetic diversity and the timely identification of new variants for guiding public health intervention measures.


Assuntos
COVID-19/epidemiologia , SARS-CoV-2/genética , Chipre/epidemiologia , Humanos , Epidemiologia Molecular , Filogenia , SARS-CoV-2/fisiologia
12.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34009288

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is undeniably the most severe global health emergency since the 1918 Influenza outbreak. Depending on its evolutionary trajectory, the virus is expected to establish itself as an endemic infectious respiratory disease exhibiting seasonal flare-ups. Therefore, despite the unprecedented rally to reach a vaccine that can offer widespread immunization, it is equally important to reach effective prevention and treatment regimens for coronavirus disease 2019 (COVID-19). Contributing to this effort, we have curated and analyzed multi-source and multi-omics publicly available data from patients, cell lines and databases in order to fuel a multiplex computational drug repurposing approach. We devised a network-based integration of multi-omic data to prioritize the most important genes related to COVID-19 and subsequently re-rank the identified candidate drugs. Our approach resulted in a highly informed integrated drug shortlist by combining structural diversity filtering along with experts' curation and drug-target mapping on the depicted molecular pathways. In addition to the recently proposed drugs that are already generating promising results such as dexamethasone and remdesivir, our list includes inhibitors of Src tyrosine kinase (bosutinib, dasatinib, cytarabine and saracatinib), which appear to be involved in multiple COVID-19 pathophysiological mechanisms. In addition, we highlight specific immunomodulators and anti-inflammatory drugs like dactolisib and methotrexate and inhibitors of histone deacetylase like hydroquinone and vorinostat with potential beneficial effects in their mechanisms of action. Overall, this multiplex drug repurposing approach, developed and utilized herein specifically for SARS-CoV-2, can offer a rapid mapping and drug prioritization against any pathogen-related disease.


Assuntos
Antivirais/química , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , SARS-CoV-2/química , Antivirais/uso terapêutico , COVID-19/virologia , Humanos , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
13.
Biomedicines ; 9(3)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800045

RESUMO

Despite their distinct clinical manifestation, frontal fibrosing alopecia (FFA) and lichen planopilaris (LPP) display similar histopathologic features. Aberrant innate immune responses to endogenous or exogenous triggers have been discussed as factors that could drive inflammatory cascades and the collapse of the stem cell niche. In this exploratory study, we investigate the bacterial composition of scalp skin and plucked hair follicles (HF) of patients with FFA, LPP and alopecia areata circumscripta (AAc), as well as healthy individuals, in relation to cellular infiltrates and the expression of defense mediators. The most abundant genus in lesional and non-lesional HFs of LPP and FFA patients was Staphylococcus, while Lawsonella dominated in healthy individuals and in AAc patients. We observed statistically significant differences in the ratio of Firmicutes to Actinobacteria between healthy scalp, lesional, and non-lesional sites of FFA and LPP patients. This marked dysbiosis in FFA and LPP in compartments close to the bulge was associated with increased HßD1 and HßD2 expression along the HFs from lesional sites, while IL-17A was increased in lesional HF from AAc patients. The data encourage further studies on how exogenous factors and molecular interactions across the HF epithelium could contribute to disease onset and propagation.

14.
Sci Rep ; 11(1): 8198, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854127

RESUMO

The different types of land-use and soil lithology in urban and peri-urban areas of modern cities compose a complex mosaic of soil ecosystems. It is largely unknown how these differences result in changes in bacterial community composition and structure as well as in functional guilds involved in N cycling. To investigate the bacterial composition and the proportion of denitrifiers in agricultural, forested, schoolyard and industrial areas, 24 samples were collected from urban and peri-urban sites of Lefkosia. Bacterial diversity and the proportion of denitrifiers were assessed by NGS and qPCR, respectively. Proteobacteria, Actinobacteria, Bacteriodetes, Chloroflexi, Acidobacteria and Planctomycetes were identified as the most dominant phyla across all sites, while agricultural sites exhibited the highest bacterial diversity. Heavy metals such as Co, Pb, V and Al were identified as key factors shaping bacterial composition in industrial and schoolyard sites, while the bacterial assemblages in agricultural and forested sites were associated with Ca. Variance partitioning analysis showed that 10.2% of the bacterial community variation was explained by land use management, 5.1% by chemical elements due to soil lithology, and 1.4% by sampling location. The proportion of denitrifiers varied with land use management. In industrial and schoolyard sites, the abundance of the nosZII bacterial community increased while nirK abundance declined. Our data showed that land use and lithology have a moderate impact on the bacterial assemblages in urban and peri-urban areas of Lefkosia. As the nosZII bacterial community is important to the N2O sink capacity of soils, it would be interesting to elucidate the factors contributing to the proliferation of the nosZII clade in these soils.


Assuntos
Bactérias/classificação , Metais Pesados/análise , Análise de Sequência de DNA/métodos , Solo/química , Agricultura , Bactérias/genética , Bactérias/isolamento & purificação , Chipre , DNA Bacteriano/genética , DNA Ribossômico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Ciclo do Nitrogênio , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Reforma Urbana
15.
PLoS One ; 16(1): e0238665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33497392

RESUMO

This study aims to highlight SARS-COV-2 mutations which are associated with increased or decreased viral virulence. We utilize genetic data from all strains available from GISAID and countries' regional information, such as deaths and cases per million, as well as COVID-19-related public health austerity measure response times. Initial indications of selective advantage of specific mutations can be obtained from calculating their frequencies across viral strains. By applying modelling approaches, we provide additional information that is not evident from standard statistics or mutation frequencies alone. We therefore, propose a more precise way of selecting informative mutations. We highlight two interesting mutations found in genes N (P13L) and ORF3a (Q57H). The former appears to be significantly associated with decreased deaths and cases per million according to our models, while the latter shows an opposing association with decreased deaths and increased cases per million. Moreover, protein structure prediction tools show that the mutations infer conformational changes to the protein that significantly alter its structure when compared to the reference protein.


Assuntos
COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Proteínas Viroporinas/genética , COVID-19/transmissão , Proteínas do Nucleocapsídeo de Coronavírus/química , Sistemas de Informação Geográfica , Humanos , Modelos Lineares , Mutação , Pandemias , Fosfoproteínas/química , Fosfoproteínas/genética , Filogenia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/classificação , Proteínas Viroporinas/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-32982993

RESUMO

Background: Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease caused by Gonadotropin-Releasing Hormone (GnRH) deficiency. So far a limited number of variants in several genes have been associated with the pathogenesis of the disease. In this original research and review manuscript the retrospective analysis of known variants in ANOS1 (KAL1), RNF216, WDR11, FGFR1, CHD7, and POLR3A genes is described, along with novel variants identified in patients with CHH by the present study. Methods: Seven GnRH deficient unrelated Cypriot patients underwent whole exome sequencing (WES) by Next Generation Sequencing (NGS). The identified novel variants were initially examined by in silico computational algorithms and structural analysis of their predicted pathogenicity at the protein level was confirmed. Results: In four non-related GnRH males, a novel X-linked pathogenic variant in ANOS1 gene, two novel autosomal dominant (AD) probably pathogenic variants in WDR11 and FGFR1 genes and one rare AD probably pathogenic variant in CHD7 gene were identified. A rare autosomal recessive (AR) variant in the SRA1 gene was identified in homozygosity in a female patient, whilst two other male patients were also, respectively, found to carry novel or previously reported rare pathogenic variants in more than one genes; FGFR1/POLR3A and SRA1/RNF216. Conclusion: This report embraces the description of novel and previously reported rare pathogenic variants in a series of genes known to be implicated in the biological development of CHH. Notably, patients with CHH can harbor pathogenic rare variants in more than one gene which raises the hypothesis of locus-locus interactions providing evidence for digenic inheritance. The identification of such aberrations by NGS can be very informative for the management and future planning of these patients.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas da Matriz Extracelular/genética , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/genética , RNA Polimerase III/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Adulto , Idoso , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Linhagem , Estudos Retrospectivos , Adulto Jovem
17.
Front Integr Neurosci ; 14: 45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973469

RESUMO

OBJECTIVE: Transcranial magnetic stimulation (TMS), a non-invasive procedure, stimulates the cortex evaluating the central motor pathways. The response is called motor evoked potential (MEP). Polyphasia results when the response crosses the baseline more than twice (zero crossing). Recent research shows MEP polyphasia in patients with generalized genetic epilepsy (GGE) and their first-degree relatives compared with controls. Juvenile Myoclonic Epilepsy (JME), a GGE type, is not well studied regarding polyphasia. In our study, we assessed polyphasia appearance probability with TMS in JME patients, their healthy first-degree relatives and controls. Two genetic approaches were applied to uncover genetic association with polyphasia. METHODS: 20 JME patients, 23 first-degree relatives and 30 controls underwent TMS, obtaining 10-15 MEPs per participant. We evaluated MEP mean number of phases, proportion of MEP trials displaying polyphasia for each subject and variability between groups. Participants underwent whole exome sequencing (WES) via trio-based analysis and two-case scenario. Extensive bioinformatics analysis was applied. RESULTS: We identified increased polyphasia in patients (85%) and relatives (70%) compared to controls (47%) and significantly higher mean number of zero crossings (i.e., occurrence of phases) (patients 1.49, relatives 1.46, controls 1.22; p < 0.05). Trio-based analysis revealed a candidate polymorphism, p.Glu270del,in SYT14 (Synaptotagmin 14), in JME patients and their relatives presenting polyphasia. Sanger sequencing analysis in remaining participants showed no significant association. In two-case scenario, a machine learning approach was applied in variants identified from odds ratio analysis and risk prediction scores were obtained for polyphasia. The results revealed 61 variants of which none was associated with polyphasia. Risk prediction scores indeed showed lower probability for non-polyphasic subjects on having polyphasia and higher probability for polyphasic subjects on having polyphasia. CONCLUSION: Polyphasia was present in JME patients and relatives in contrast to controls. Although no known clinical symptoms are linked to polyphasia this neurophysiological phenomenon is likely due to common cerebral electrophysiological abnormality. We did not discover direct association between genetic variants obtained and polyphasia. It is likely these genetic traits alone cannot provoke polyphasia, however, this predisposition combined with disturbed brain-electrical activity and tendency to generate seizures may increase the risk of developing polyphasia, mainly in patients and relatives.

18.
Arthritis Res Ther ; 22(1): 147, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32552896

RESUMO

BACKGROUND: Approximately 50% of systemic lupus erythematosus (SLE) patients develop nephritis, which is among the most severe and frequent complications of the disease and a leading cause of morbidity and mortality. Despite intensive research, there are still no reliable lupus nephritis (LN) markers in clinical use that can assess renal damage and activity with a high sensitivity and specificity. To this end, the aim of this study was to identify new clinically relevant tissue-specific protein biomarkers and possible underlying molecular mechanisms associated with renal involvement in SLE, using mass spectrometry (MS)-based proteomics. METHODS: Kidneys were harvested from female triple congenic B6.NZMsle1/sle2/sle3 lupus mice model, and the respective sex- and age-matched C57BL/6 control mice at 12, 24 and 36 weeks of age, representing pre-symptomatic, established and end-stage LN, respectively. Proteins were extracted from kidneys, purified, reduced, alkylated and digested by trypsin. Purified peptides were separated by liquid chromatography and analysed by high-resolution MS. Data were processed by the Progenesis QIp software, and functional annotation analysis was performed using DAVID bioinformatics resources. Immunofluorescence and multiple reaction monitoring (MRM) MS methods were used to confirm prospective biomarkers in SLE mouse strains as well as human serum samples. RESULTS: Proteomic profiling of kidney tissues from SLE and control mice resulted in the identification of more than 3800 unique proteins. Pathway analysis revealed a number of dysregulated molecular pathways that may be mechanistically involved in renal pathology, including phagosome and proximal tubule bicarbonate reclamation pathways. Proteomic analysis supported by human transcriptomic data and pathway analysis revealed Coronin-1A, Ubiquitin-like protein ISG15, and Rho GDP-dissociation inhibitor 2, as potential LN biomarkers. These results were further validated in other SLE mouse strains using MRM-MS. Most importantly, experiments in humans showed that measurement of Coronin-1A in human sera using MRM-MS can segregate LN patients from SLE patients without nephritis with a high sensitivity (100%) and specificity (100%). CONCLUSIONS: These preliminary findings suggest that serum Coronin-1A may serve as a promising non-invasive biomarker for LN and, upon validation in larger cohorts, may be employed in the future as a screening test for renal disease in SLE patients.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Proteínas dos Microfilamentos/metabolismo , Animais , Biomarcadores , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteômica
19.
Bioinformatics ; 36(13): 4070-4079, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369599

RESUMO

MOTIVATION: Understanding the underlying biological mechanisms and respective interactions of a disease remains an elusive, time consuming and costly task. Computational methodologies that propose pathway/mechanism communities and reveal respective relationships can be of great value as they can help expedite the process of identifying how perturbations in a single pathway can affect other pathways. RESULTS: We present a random-walks-based methodology called PathWalks, where a walker crosses a pathway-to-pathway network under the guidance of a disease-related map. The latter is a gene network that we construct by integrating multi-source information regarding a specific disease. The most frequent trajectories highlight communities of pathways that are expected to be strongly related to the disease under study.We apply the PathWalks methodology on Alzheimer's disease and idiopathic pulmonary fibrosis and establish that it can highlight pathways that are also identified by other pathway analysis tools as well as are backed through bibliographic references. More importantly, PathWalks produces additional new pathways that are functionally connected with those already established, giving insight for further experimentation. AVAILABILITY AND IMPLEMENTATION: https://github.com/vagkaratzas/PathWalks. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Doença de Alzheimer , Redes Reguladoras de Genes , Doença de Alzheimer/genética , Humanos , Software
20.
Arthritis Res Ther ; 22(1): 107, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32381114

RESUMO

BACKGROUND: Pathogenesis and aetiology of systemic sclerosis (SSc) are currently unclear, thus rendering disease prognosis, diagnosis and treatment challenging. The aim of this study was to use paired skin biopsy samples from affected and unaffected areas of the same patient, in order to compare the proteomes and identify biomarkers and pathways which are associated with SSc pathogenesis. METHODS: Biopsies were obtained from affected and unaffected skin areas of SSc patients. Samples were cryo-pulverised and proteins were extracted and analysed using mass spectrometry (MS) discovery analysis. Differentially expressed proteins were revealed after analysis with the Progenesis QIp software. Pathway analysis was performed using the Enrichr Web server. Using specific criteria, fifteen proteins were selected for further validation with targeted-MS analysis. RESULTS: Proteomic analysis led to the identification and quantification of approximately 2000 non-redundant proteins. Statistical analysis showed that 169 of these proteins were significantly differentially expressed in affected versus unaffected tissues. Pathway analyses showed that these proteins are involved in multiple pathways that are associated with autoimmune diseases (AIDs) and fibrosis. Fifteen of these proteins were further investigated using targeted-MS approaches, and five of them were confirmed to be significantly differentially expressed in SSc affected versus unaffected skin biopsies. CONCLUSION: Using MS-based proteomics analysis of human skin biopsies from patients with SSc, we identified a number of proteins and pathways that might be involved in SSc progression and pathogenesis. Fifteen of these proteins were further validated, and results suggest that five of them may serve as potential biomarkers for SSc.


Assuntos
Proteômica , Escleroderma Sistêmico/diagnóstico , Biomarcadores , Biópsia , Ensaios de Triagem em Larga Escala , Humanos , Escleroderma Sistêmico/patologia , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA