Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 338: 122695, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802286

RESUMO

The aim of the present study was to investigate the impacts of glyphosate herbicide on the survival and proliferation of glioblastoma cells and to explore the molecular mechanisms underlying such effects. For this, cultured human glioblastoma cell line, A172, was exposed to the glyphosate analytical standard, a glyphosate-based herbicide formulation (GBH), or the metabolite aminomethylphosphonic acid (AMPA). The three compounds induced A172 cytotoxicity after 24 h of exposure, with more prominent cytotoxic effects after 48 and 72 h of treatment. Further experiments were performed by treating A172 cells for 6 h with glyphosate, GBH, or AMPA at 0.5 mg/L, which corresponds to the maximum residue limits for glyphosate and AMPA in drinking water in Brazil. Colony forming units (CFU) assay showed that AMPA increased the number of CFU formed, while glyphosate and GBH increased the CFU sizes. The three compounds tested altered the cell cycle and caused DNA damage, as indicated by the increase in γ-H2AX. The mechanisms underlying the pesticide effects involve the activation of Akt and mitogen-activated protein kinases (MAPKs) signaling pathways, oxidative imbalance, and inflammation. Glyphosate led to NLRP3 activation culminating in caspase-1 recruitment, while AMPA decreased NLRP3 immunocontent and GBH did not alter this pathway. Results of the present study suggest that exposure to glyphosate (isolated or in formulation) or to its metabolite AMPA may affect cell signaling pathways resulting in oxidative damage and inflammation, giving glioblastoma cells an advantage by increasing their proliferation and growth.


Assuntos
Glioblastoma , Herbicidas , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Estresse Oxidativo , Proliferação de Células , Herbicidas/metabolismo , Transdução de Sinais , Inflamação , Glifosato
3.
Oxid Med Cell Longev ; 2022: 3710449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360199

RESUMO

Glioblastoma multiforme (GBM) is a notably lethal brain tumor associated with high proliferation rate and therapeutic resistance, while currently effective treatment options are still lacking. Imidazo[1,2-a]pyridine derivatives and organoselenium compounds are largely used in medicinal chemistry and drug development. This study is aimed at further investigating the antitumor mechanism of IP-Se-06 (3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazol[1,2-a]pyridine), a selenylated imidazo[1,2-a]pyridine derivative in glioblastoma cells. IP-Se-06 exhibited high cytotoxicity against A172 cells (IC50 = 1.8 µM) and selectivity for this glioblastoma cell. The IP-Se-06 compound has pharmacological properties verified in its ADMET profile, especially related to blood-brain barrier (BBB) permeability. At low concentration (1 µM), IP-Se-06 induced intracellular redox state modulation with depletion of TrxR and GSH levels as well as inhibition of NRF2 protein. IP-Se-06 also decreased mitochondrial membrane potential, induced cytochrome c release, and chromatin condensation. Furthermore, IP-Se-06 induced apoptosis by decreasing levels of Bcl-xL while increasing levels of γ-H2AX and p53 proteins. Treatment with IP-Se-06 induced cell cycle arrest and showed antiproliferative effect by inhibition of Akt/mTOR/HIF-1α and ERK 1/2 signaling pathways. In addition, IP-Se-06 displayed significant inhibition of p38 MAPK and p-p38, leading to inhibition of inflammasome complex proteins (NLRP3 and caspase-1) in glioblastoma cells. These collective findings demonstrated that IP-Se-06 is a bioactive molecule that can be considered a candidate for the development of a novel drug for glioblastoma treatment.


Assuntos
Glioblastoma , Apoptose , Linhagem Celular Tumoral , Glioblastoma/patologia , Humanos , Oxirredução , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
5.
Oncogenesis ; 10(1): 5, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419981

RESUMO

MNT, a transcription factor of the MXD family, is an important modulator of the oncoprotein MYC. Both MNT and MYC are basic-helix-loop-helix proteins that heterodimerize with MAX in a mutually exclusive manner, and bind to E-boxes within regulatory regions of their target genes. While MYC generally activates transcription, MNT represses it. However, the molecular interactions involving MNT as a transcriptional regulator beyond the binding to MAX remain unexplored. Here we demonstrate a novel MAX-independent protein interaction between MNT and REL, the oncogenic member of the NF-κB family. REL participates in important biological processes and it is altered in a variety of tumors. REL is a transcription factor that remains inactive in the cytoplasm in an inhibitory complex with IκB and translocates to the nucleus when the NF-κB pathway is activated. In the present manuscript, we show that MNT knockdown triggers REL translocation into the nucleus and thus the activation of the NF-κB pathway. Meanwhile, MNT overexpression results in the repression of IκBα, a bona fide REL target. Both MNT and REL bind to the IκBα gene on the first exon, suggesting its regulation as an MNT-REL complex. Altogether our data indicate that MNT acts as a repressor of the NF-κB pathway by two mechanisms: (1) retention of REL in the cytoplasm by MNT interaction, and (2) MNT-driven repression of REL-target genes through an MNT-REL complex. These results widen our knowledge about MNT biological roles and reveal a novel connection between the MYC/MXD and NF-κB pathways, two of the most prominent pathways in cancer.

6.
Anticancer Agents Med Chem ; 21(6): 703-715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32723262

RESUMO

BACKGROUND AND OBJECTIVE: Evidence point out promising anticancer activities of Dihydropyrimidinones (DHPM) and organoselenium compounds. This study aimed to evaluate the cytotoxic and antiproliferative potential of DHPM-derived selenoesters (Se-DHPM), as well as their molecular mechanisms of action. METHODS: Se-DHPM cytotoxicity was evaluated against cancer lines (HeLa, HepG2, and MCF-7) and normal cells (McCoy). HepG2 clonogenic assay allowed verifying antiproliferative effects. The propidium iodide/ orange acridine fluorescence readings showed the type of cell death induced after treatments (72h). Molecular simulations with B-DNA and 49H showed docked positions (AutoDock Vina) and trajectories/energies (GROMACS). In vitro molecular interactions used CT-DNA and 49H applying UV-Vis absorbance and fluorescence. Comet assay evaluated DNA fragmentation of HepG2 cells. Flow cytometry analysis verified HepG2 cell cycle effects. Levels of proteins (ß-actin, p53, BAX, HIF-1α, γH2AX, PARP-1, cyclin A, CDK-2, and pRB) were quantified by immunoblotting. RESULTS: Among Se-DHPM, 49H was selectively cytotoxic to HepG2 cells, reduced cell proliferation, and increased BAX (80%), and p53 (66%) causing apoptosis. Molecular assays revealed 49H inserted in the CT-DNA molecule causing the hypochromic effect. Docking simulations showed H-bonds and hydrophobic interactions, which kept the ligand partially inserted into the DNA minor groove. 49H increased the DNA damage (1.5 fold) and γH2AX level (153%). Besides, treatments reduced PARP-1 (60%) and reduced pRB phosphorylation (21%) as well as decreased cyclin A (46%) arresting cell cycle at the G1 phase. CONCLUSION: Together all data obtained confirmed the hypothesis of disruptive interactions between Se-DHPM and DNA, thereby highlighting its potential as a new anticancer drug.


Assuntos
Antineoplásicos/síntese química , Carcinoma Hepatocelular/tratamento farmacológico , Citotoxinas/síntese química , Neoplasias Hepáticas/tratamento farmacológico , Compostos Organosselênicos/síntese química , Actinina/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxinas/farmacologia , Fragmentação do DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Simulação de Acoplamento Molecular , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/toxicidade , Fosforilação , Relação Estrutura-Atividade , Proteína X Associada a bcl-2/metabolismo
7.
J Biochem Mol Toxicol ; 35(3): e22663, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33125183

RESUMO

Imidazo[1,2-a]pyridines (IP) and organoselenium compounds have been widely exploited in medicinal chemistry due to their pharmacological activities. Hepatocellular carcinoma (HCC) has few treatment options, and unfortunately, the prognosis is poor. Thus, the development of novel therapeutic drugs is urgent. The present study aimed at evaluating the antitumor mechanism of selenylated IP against HepG2 cells and in vivo. The selenylated IP named IP-Se-06 (3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazol[1,2-a]pyridine) showed high cytotoxicity against HepG2 cells (half-maximal inhibitory concentration [IC50 ] = 0.03 µM) and selectivity for this tumor cell line. At nontoxic concentration, IP-Se-06 decreased the protein levels of Bcl-xL and increased the levels of p53, leading to inhibition of cell proliferation and apoptosis. This compound decreased the level of extracellular signal-regulated kinase 1/2 protein and changed the levels of proteins involved in the drive of the cell cycle, tumor growth, and survival (cyclin B1, cyclin-dependent kinase 2). In addition, IP-Se-06 decreased the number of cells in the S phase. In addition, IP-Se-06 led to increased generation of reactive oxygen species, changed antioxidant defenses, and caused DNA fragmentation. Finally, IP-Se-06 significantly inhibited the growth of Ehrlich ascites tumors in mice, increased survival time, and inhibited angiogenesis. Therefore, IP-Se-06 may be an important compound regarding the development of a therapeutic drug for HCC treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piridinas/farmacologia , Animais , Antineoplásicos/química , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organosselênicos/química , Piridinas/química , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Biol Chem ; 295(7): 2001-2017, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31919096

RESUMO

The MAX network transcriptional repressor (MNT) is an MXD family transcription factor of the basic helix-loop-helix (bHLH) family. MNT dimerizes with another transcriptional regulator, MYC-associated factor X (MAX), and down-regulates genes by binding to E-boxes. MAX also dimerizes with MYC, an oncogenic bHLH transcription factor. Upon E-box binding, the MYC-MAX dimer activates gene expression. MNT also binds to the MAX dimerization protein MLX (MLX), and MNT-MLX and MNT-MAX dimers co-exist. However, all MNT functions have been attributed to MNT-MAX dimers, and no functions of the MNT-MLX dimer have been described. MNT's biological role has been linked to its function as a MYC oncogene modulator, but little is known about its regulation. We show here that MNT localizes to the nucleus of MAX-expressing cells and that MNT-MAX dimers bind and repress the MNT promoter, an effect that depends on one of the two E-boxes on this promoter. In MAX-deficient cells, MNT was overexpressed and redistributed to the cytoplasm. Interestingly, MNT was required for cell proliferation even in the absence of MAX. We show that in MAX-deficient cells, MNT binds to MLX, but also forms homodimers. RNA-sequencing experiments revealed that MNT regulates the expression of several genes even in the absence of MAX, with many of these genes being involved in cell cycle regulation and DNA repair. Of note, MNT-MNT homodimers regulated the transcription of some genes involved in cell proliferation. The tight regulation of MNT and its functionality even without MAX suggest a major role for MNT in cell proliferation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas Repressoras/genética , Transcrição Gênica , Sequência de Aminoácidos/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Proliferação de Células/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Sequências Hélice-Alça-Hélice/genética , Humanos , Regiões Promotoras Genéticas , Multimerização Proteica/genética , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/química
9.
Biochem Biophys Res Commun ; 503(3): 1291-1297, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30017191

RESUMO

A novel series of selenylated imidazo[1,2-a]pyridines were designed and synthesized with a view to a promising activity against breast cancer cell. The compounds, 7-methyl-3-(naphthalene-1-ylselanyl)-2-phenylimidazo[1,2-a]pyridine, named IP-Se-05, and 3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazo[1,2-a]pyridine, named IP-Se-06, showed high cytotoxicity for MCF-7 cells (IC50 = 26.0 µM and 12.5 µM, respectively). Both the compounds inhibited the cell proliferation and caused decrease in the number of cells in the G2/M phase of cell cycle. IP-Se-05 and IP-Se-06 were also evaluated for effects on CT-DNA and DNA of MCF-7 cells. The compounds intercalated into CT-DNA and both treatments caused cleavage of DNA in cells. In addition, the compounds induced cell death by apoptosis. However, the presence of (2-methoxyphenyl) selenyl moiety at the imidazo[1,2-a]pyridine (IP-Se-06) appears to have a better antitumor effect with higher cytotoxicity at a lower concentration and caused less necrosis. Overall, the current study established IP-Se-06 more than IP-Se-05 as a potential prototype compound to be employed as an antiproliferative agent for the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Clivagem do DNA/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Food Chem Toxicol ; 118: 557-565, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29886231

RESUMO

Antiinflammatory and antitumor activity has been reported in Passiflora edulis (yellow passion fruit) nevertheless the intrinsic mechanisms of action are not fully elucidated. The present study aimeds to perform a comparison between the antitumor activity involving the crude extract (HCE) and the supercritical fluid extract with ethanol as co-solvent (SFEtOH) from P. edulis f. flavicarpa Deg. The in vitro cytotoxicity was evaluated in MCF-7 cells, while the in vivo antitumor activity was assessed in male Balb/c mice inoculated with Ehrlich carcinoma cells. SFEtOH exhibited higher antitumor activity compared to HCE. Wherein, SFEtOH showed an EC50 of 264.6 µg/mL against MCF-7 cells as well as an increased inhibition of tumor growth of 48.5% (p < 0.001) in male Balb/c mice, thereby promoting an increased mice lifespan to approximately 42%. Moreover, SFEtOH caused lipid (p < 0.001) and protein (p < 0.001) oxidation by increasing glutathione redox cycle activity while decreased the thioredoxin reductase activity (p < 0.001). SFEtOH also induced oxidative DNA damage in Ehrlich ascites carcinoma (EAC) cells leading to G2/M cycle arrest and has increased apoptotic cells up to 48.2%. These data suggest that the probable mechanisms of antitumor effect are associated to the lipid, protein and DNA damage, leading to cell cycle arrest and triggering apoptosis via mitochondrial pathway, should be probable due to the presence of medium and long chain fatty acids such as lauric acid.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ácidos Graxos/metabolismo , Estresse Oxidativo , Passiflora/química , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Biomarcadores , Ensaios de Seleção de Medicamentos Antitumorais , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Eur J Med Chem ; 155: 503-515, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29908443

RESUMO

Novel pyrimidinic selenoureas were synthesized and evaluated against tumour and normal cell lines. Among these, the compound named 3j initially showed relevant cytotoxicity and selectivity for tumour cells. Three analogues of 3j were designed and synthesized keeping in view the structural requirements of this compound. Almost all the tested compounds displayed considerable cytotoxicity. However, 8a, one of the 3j analogues, was shown to be highly selective and cytotoxic, especially for breast carcinoma cells (MCF-7) (IC50 = 3.9 µM). Furthermore, 8a caused DNA damage, inhibited cell proliferation, was able to arrest cell cycle in S phase, and induced cell death by apoptosis in human breast carcinoma cells. Moreover, predictions of pharmacokinetic properties showed that 8a may present good absorption and permeation characteristics for oral administration. Overall, the current study established 8a as a potential drug prototype to be employed as a DNA interactive cytotoxic agent for the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Compostos Organosselênicos/farmacologia , Pirimidinas/farmacologia , Ureia/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Células MCF-7 , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ureia/síntese química , Ureia/química , Ureia/farmacologia
12.
Biochem Biophys Res Commun ; 477(4): 640-646, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27346131

RESUMO

The purpose of the study was to obtain further in vivo data of antitumor effects and mechanisms triggered by juglone and Q7 in combination with ascorbate. The study was done using Ehrlich ascites tumor-bearing mice. Treatments were intraperitoneal every 24 h for 9 days. Control group was treated with excipient. Previous tests selected the doses of juglone and Q7 plus ascorbate (1 and 100 mg/kg, respectively). Samples of ascitic fluid were collected to evaluate carbonyl proteins, GSH and activity of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Hypoxia inducible factor HIF-1α, GLUT1, proteins driving cell cycle (p53, p16 and cyclin A) and apoptosis (poly-ADP-polymerase PARP, Bax and Bcl-xL) were assessed by western blot. Tumor cells were categorized by the phase of cell cycle using flow cytometry and type of cell death using acridine orange/ethidium bromide. A glucose uptake assessment was performed by liquid scintillation using Ehrlich tumor cells cultured with (14)C-deoxyglucose. Treatments caused increased protein carbonylation and activity of antioxidant enzymes and decreased levels of GSH, HIF-1α, GLUT1 and glucose uptake in tumor cells. They also caused increased number of tumor cells in G1, p53 and p16 activation and decreased cyclin A, but only when combined with ascorbate. Apoptosis was induced mostly when treatments were done with ascorbate, causing PARP and Bax cleavage, and increased Bax/Bcl-xL ratio. Juglone and Q7 in combination with ascorbate caused inhibition of tumor progress in vivo by triggering apoptosis and cell cycle arrest associated with oxidative stress, suppression of HIF-1 and uncoupling of glycolytic metabolism.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Ehrlich/tratamento farmacológico , Aminofenóis/administração & dosagem , Animais , Ácido Ascórbico/administração & dosagem , Carcinoma de Ehrlich/patologia , Progressão da Doença , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Naftoquinonas/administração & dosagem
13.
J Ethnopharmacol ; 189: 139-47, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27178634

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ayurvedic and Chinese traditional medicine and tribal people use herbal preparations containing Piper nigrum fruits for the treatment of many health disorders like inflammation, fever, asthma and cancer. In Brazil, traditional maroon culture associates the spice Piper nigrum to health recovery and inflammation attenuation. AIMS OF THE STUDY: The aim of the current work was to evaluate the relationship between reactive oxygen species (ROS) overproduction, DNA fragmentation, cell cycle arrest and apoptosis induced by Piper nigrum ethanolic extract and its antitumor activity. METHODS: The plant was macerated in ethanol. Extract constitution was assessed by TLC, UV-vis and ESI-IT-MS/MS spectrometry. The cytotoxicity, proliferation and intracellular ROS generation was evaluated in MCF-7 cells. DNA damage effects were evaluated through intercalation into CT-DNA, plasmid DNA cleavage and oxidative damage in CT-DNA. Tumor growth inhibition, survival time increase, apoptosis, cell cycle arrest and oxidative stress were assessed in Ehrlich ascites carcinoma-bearing mice. RESULTS: Extraction yielded 64mg/g (36% piperine and 4.2% piperyline). Treatments caused DNA damage and reduced cell viability (EC50=27.1±2.0 and 80.5±6.6µg/ml in MCF-7 and HT-29 cells, respectively), inhibiting cell proliferation by 57% and increased ROS generation in MCF-7 cells (65%). Ehrlich carcinoma was inhibited by the extract, which caused reduction of tumor growth (60%), elevated survival time (76%), cell cycle arrest and induced apoptosis. The treatment with extract increased Bax and p53 and inhibited Bcl-xL and cyclin A expression. It also induced an oxidative stress in vivo verified as enhanced lipid peroxidation and carbonyl proteins content and increased activities of glutathione reductase, superoxide dismutase and catalase. GSH concentration was decreased in tumor tissue from mice. CONCLUSION: The ethanolic extract has cytotoxic and antiproliferative effect on MCF-7 cells and antitumor effect in vivo probably due to ROS overproduction that induced oxidative stress affecting key proteins involved in cell cycle arrest at G1/S and triggering apoptosis. Finally, the overall data from this study are well in line with the traditional claims for the antitumor effect of Piper nigrum fruits.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Carcinoma de Ehrlich/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Etanol/química , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piper nigrum/química , Piperidinas/farmacologia , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Solventes/química , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma de Ehrlich/genética , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Proteínas de Ciclo Celular/metabolismo , Relação Dose-Resposta a Droga , Feminino , Células HT29 , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Células MCF-7 , Masculino , Camundongos Endogâmicos BALB C , Oxidantes/isolamento & purificação , Fitoterapia , Piperidinas/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Carbonilação Proteica/efeitos dos fármacos , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Regulação para Cima
14.
Chem Commun (Camb) ; 51(56): 11194-7, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26073290

RESUMO

We describe herein a novel type of monodisperse water-soluble magnetite nanoparticle coated with pheomelanin using an environmentally-friendly approach in aqueous medium. The results indicate superparamagnetic behaviour at room temperature and show improved negative contrast in T2-weighted MRI with a transverse relaxivity of 218 mM(-1) s(-1).


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Melaninas/química
15.
Toxicol Sci ; 147(1): 104-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26048652

RESUMO

Xyloglucan-block-polycaprolactone (XGO-PCL) copolymer nanoparticles have been proposed as nanocarriers for drug delivery. However, the possible harmful effects of exposure to nanoparticles still remain a concern. Therefore, the aim of this study is to evaluate the potential toxicity of XGO-PCL nanoparticles using in vitro and in vivo assays. Cytotoxicity and genotoxicity studies were conducted on MRC-5 human fetal lung fibroblast cells upon exposure to XGO-PCL nanoparticles. No significant reduction in the cell viability and no DNA damage were observed at the different concentrations tested. Erythrocyte toxicity was assessed by the incubation of nanoparticles with human blood. XGO-PCL nanoparticles induced a hemolytic ratio of less than 1%, indicating good blood compatibility. Finally, the subacute toxicity of XGO-PCL nanoparticles (10 mg/kg/day) was evaluated in BALB/c mice when administered orally or intraperitoneally for 14 days. Results of the in vivo toxicity study showed no clinical signs of toxicity, mortality, weight loss, or hematological and biochemical alterations after treatment with nanoparticles. Also, microscopic analysis of the major organs revealed no histopathological abnormalities, corroborating the previous results. Thus, it can be concluded that XGO-PCL nanoparticles induced no effect indicative of toxicity, indicating their potential use as drug delivery systems.


Assuntos
Sistemas de Liberação de Medicamentos/efeitos adversos , Glucanos/toxicidade , Nanopartículas/toxicidade , Poliésteres/toxicidade , Xilanos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Contagem de Células Sanguíneas , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutagênicos/toxicidade , Polímeros
16.
Oxid Med Cell Longev ; 2015: 495305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793019

RESUMO

The aim of this study was to enhance the understanding of the antitumor mechanism of 1,4-naphthoquinones and ascorbate. Juglone, phenylaminonaphthoquinone-7, and 9 (Q7/Q9) were evaluated for effects on CT-DNA and DNA of cancer cells. Evaluations in MCF-7 cells are DNA damage, ROS levels, viability, and proliferation. Proteins from MCF-7 lysates were immunoblotted for verifying PARP integrity, γH2AX, and pAkt. Antitumor activity was measured in Ehrlich ascites carcinoma-bearing mice. The same markers of molecular toxicity were assessed in vivo. The naphthoquinones intercalate into CT-DNA and caused oxidative cleavage, which is increased in the presence of ascorbate. Treatments caused DNA damage and reduced viability and proliferation of MCF-7 cells. Effects were potentiated by ascorbate. No PARP cleavage was observed. Naphthoquinones, combined with ascorbate, caused phosphorylation of H2AX and inhibited pAkt. ROS were enhanced in MCF-7 cells, particularly by the juglone and Q7 plus ascorbate. Ehrlich carcinoma was inhibited by juglone, Q7, or Q9, but the potentiating effect of ascorbate was reproduced in vivo only in the cases of juglone and Q7, which caused up to 60% inhibition of tumor and the largest extension of survival. Juglone and Q7 plus ascorbate caused enhanced ROS and DNA damage and inhibited pAkt also in Ehrlich carcinoma cells.


Assuntos
Antineoplásicos/uso terapêutico , Ácido Ascórbico/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Naftoquinonas/toxicidade , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Carcinoma de Ehrlich/metabolismo , Carcinoma de Ehrlich/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Histonas/metabolismo , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Naftoquinonas/química , Naftoquinonas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA