Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Sci Food Agric ; 102(5): 1894-1902, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34510449

RESUMO

BACKGROUND: Ginger (Zingiber officinale Roscoe) is widely planted around the world. Owing to continuous planting, ginger is seriously affected by soilborne fungi, bacteria, and nematodes. Although preplant soil fumigation is an effective prevention strategy of soilborne diseases, individual fumigant and technology could not provide effective control of ginger soilborne disease. In our research, different combinations of soil fumigants and seed rhizome treatments were evaluated by monitoring the soil pathogens population, ginger growth, yield, and estimation of economic benefits. RESULTS: Soil fumigation effectively reduced the population of soilborne pathogens, and chloropicrin had a better control effect on soilborne pathogens than dazomet did. Preplant soil fumigation and seed rhizome treatment not only provide good control of soilborne disease, but also reduced the incidence of plant foliar pest and disease. Average yield increase rate of seed rhizome treatment was 12.0%; the highest yield increase was 24.4%. The average cost of seed rhizome treatment only increased by about 2.86%, but the rate of net revenue increase for the seed rhizome treatment reached up to 19.1%. CONCLUSION: Seed rhizome treatment is a very cost-effective soilborne disease control technology. In the management of soilborne diseases, the combined application of soil fumigation and seed rhizome treatment can reduce the risk of crops infected by soilborne diseases and ensure high and stable crop yields. © 2021 Society of Chemical Industry.


Assuntos
Fumigação , Zingiber officinale , Análise Custo-Benefício , Doenças das Plantas/prevenção & controle , Rizoma , Sementes , Solo
2.
Sci Total Environ ; 773: 145293, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940723

RESUMO

Dimethyl disulfide (DMDS), a soil fumigant, is an effective, broad-spectrum compound that often replaces bromomethane (MB) in the prevention and treatment of soil-borne diseases. However, the disadvantages of DMDS include toxicity, volatility, pungent odor, risk of human exposure, and environmental pollution. Cyclodextrin (CD) has been widely used as a carrier of chemicals in many industries due to its functional advantages and safety. In this study, a DMDS-controlled release formulation was developed by encapsulating DMDS in the cavity of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD). This formulation reduced DMDS usage and production costs. Orthogonal experimental design, Fourier transform infrared (FT-IR), Scanning electron microscopy (SEM), Thermal gravity analysis (TGA) characterization, efficacy comparison, safety, and other aspects of the evaluation showed that under the best preparation conditions, the encapsulation rate was 81.49%. The efficacy of DMDS@HP-ß-CD was similar to unformulated DMDS. The efficacy duration of the formulation was about two times longer than DMDS, and it was safer to use. This study reveals a cyclodextrin-DMDS formulation with reduced toxicity, longer duration, environmental safety and sustainability.


Assuntos
Dissulfetos , 2-Hidroxipropil-beta-Ciclodextrina , Preparações de Ação Retardada , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
3.
J Agric Food Chem ; 68(18): 5049-5058, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32134657

RESUMO

The soil phosphorus (P) cycle and P transformation are largely driven by the soil bacterial microbial community. However, little is known about the effects of dazomet (DZ) soil fumigation on soil P and soil microbial communities associated with P transformation. This research investigated P released from three farm soils as a result of DZ fumigation and changes in enzyme activity, gene abundance, and the encoding alkaline phosphatase PhoD microbial community. After DZ fumigation, we observed a briefly significant increase in the available P and the active P fractionation. The soil ALP activity, 16s rRNA abundance, and the phoD gene decreased significantly after DZ fumigation. The abundance and diversity of phoD-harboring microbes also decreased shortly after fumigation, increased significantly 14-28 days later, and then decreased again toward the end of the experimental period of 86 days. The shared OTUs between treatments became fewer with increasing time after fumigation. The changes in available P and the active P fractionation after DZ fumigation were significantly correlated with the abundance of the dominant phoD-harboring microbes. DZ fumigation promoted P mineralization in these farm soils and changed the composition of phoD-harboring microbial communities, which will benefit crops able to absorb and use P.


Assuntos
Agroquímicos/farmacologia , Fosfatase Alcalina/metabolismo , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Fósforo/análise , Microbiologia do Solo , Tiadiazinas/farmacologia , Agroquímicos/química , Fosfatase Alcalina/genética , Bactérias/classificação , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Fertilizantes/análise , Fumigação , Microbiota , Fósforo/metabolismo , Solo/química , Tiadiazinas/química
4.
J Sep Sci ; 43(8): 1499-1513, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32059263

RESUMO

The quantity of soil fumigants has increased globally that has focused attention on their environmental behavior. However, simultaneous analysis of traces of fumigant residues is often unreported because analysis methods are not readily available to measure them at low concentrations. In this study, typical solvent extraction methods were compared with headspace solid-phase microextraction methods. Both methods can be used for simultaneously measuring the concentrations of five commonly used soil fumigants in soil or water. The solvent extraction method showed acceptable recovery (76-103%) and intraday relative standard deviations (0.8-11%) for the five soil fumigants. The headspace solid-phase microextraction method also showed acceptable recovery (72-104%) and precision rates (1.3-17%) for the five soil fumigants. The solvent extraction method was more precise and more suitable for analyzing relatively high fumigant residue levels (0.05-5 µg/g) contained in multiple soil samples. The headspace solid-phase microextraction method, however, had a much lower limits of detection (0.09-2.52 µg/kg or µg/L) than the solvent extraction method (5.8-29.2 µg/kg), making headspace solid-phase microextraction most suitable for trace analysis of these fumigants. The results confirmed that the headspace solid-phase microextraction method was more convenient and sensitive for the determination of fumigants to real soil samples.

5.
Chemosphere ; 244: 125540, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32050338

RESUMO

Allyl isothiocyanate (AITC) is a soil fumigant derived from plants that can effectively control soil-borne diseases. Fully understanding the impact of various factors on its degradation can contribute to its effectiveness against pests and diseases. First, orthogonal design determined the extraction method of AITC in soil, that is using ethyl acetate as the extraction reagent, vortexing for 1 min as the extraction method and holding for 30 min as the method time. Then we studied the effects of soil texture and environmental factors on the rate and extent of AITC degradation in soil. The half-lives of nine origins soils varied from 12.2 to 71.8 h that were affected by the soil's electrical conductivity, available nitrogen, pH and organic matter content. Biotic degradation of AITC contributed significantly (68%-90%) of the total AITC degradation in six soil types. The degradation rate of AITC decreased as the initial dose of AITC increased. The degradation rate of AITC in Suihua soil generally increased with increasing temperature and soil moisture. The effect of temperature on AITC degradation was more pronounced when the soil was moist, which has practical implications for the control of soil pests and diseases. In agricultural soil, the soil's characteristics and environmental factors should be considered when determining the appropriate AITC dose suitable for soil borne disease while at the same time minimizing emissions and impact on the environment.


Assuntos
Isotiocianatos/metabolismo , Microbiologia do Solo , Agricultura , Isotiocianatos/análise , Praguicidas/análise , Solo/química
6.
J Agric Food Chem ; 68(5): 1226-1236, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922739

RESUMO

As a substitute for methyl bromide, effects of allyl isothiocyanate (AITC) on nontarget microorganisms in soil are poorly understood. This study measured the half-life of AITC in the soil as well as its effects on the soil substrate-induced respiration (SIR) and on communities of soil bacteria and fungi. The results showed that AITC had a short half-life and a short-term inhibition of SIR; high-throughput sequencing analysis showed that AITC had less effect on bacterial than fungal communities. Fumigation reduced the diversity of soil bacteria temporarily, but stimulated the diversity of soil fungi in the long-term and significantly changed the structure of the fungal community. Following AITC fumigation there were significant increases in the relative abundance of probiotics such as Sphingomonas, Streptomyces, Hypocreales, Acremonium, Aspergillus, and Pseudallescheria that help to control plant diseases. Our study provided useful information for assessing the ecological safety of AITC.


Assuntos
Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Isotiocianatos/farmacologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Fumigação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Isotiocianatos/química , Solanum lycopersicum/crescimento & desenvolvimento , Solo/química
7.
Sci Total Environ ; 711: 135080, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31818557

RESUMO

The transformation of phosphorus (P) compounds in soil depends largely on soil microbial communities and is sensitive to agricultural practices. However, the effects of soil fumigation on soil P, and microbes involved in P transformation, are unknown. Our results showed that chloropicrin (CP) fumigation significantly increased the available-P, Leached-P and active-P fractionation (inorganic P extracted from H2O, NaHCO3 and NaOH) in Shangdong and Miyun soils in the early stages of culture, while soil alkaline phosphatase (ALP) activity and phoD gene abundance decreased significantly. Leached-P in fumigated soil was positively correlated with increased active-P fractionation, indicating that it was an important source of soil Leached-P after fumigation. The changes in P-fractionation, Leached-P and ALP after fumigation were also significantly correlated with the composition of the microbial communities. CP fumigation briefly stimulated an increase in the abundance and diversity of phoD-harboring microbial communities and promoted the mineralization process of soil P. PICRUSt metagenomic analysis showed an increase in the relative abundance of microorganisms with involved in carbohydrate/lipid transport and metabolism functions after fumigation. These results suggest CP fumigation altered soil P transformation and phoD-harboring microbes that might lead to an increased risk of P enrichment in waterways.


Assuntos
Microbiota , Solo , Fosfatase Alcalina , Bactérias , Fumigação , Hidrocarbonetos Clorados , Fósforo , Microbiologia do Solo
8.
Environ Pollut ; 256: 113415, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31672346

RESUMO

Biofumigation is an effective, non-chemical method to control soil-borne pests and diseases and to maximize crop yield. We studied the responses of soil bacterial and fungal communities, the soil's nutritional state and strawberry yield, when the soil was biofumigated each year for five consecutive years using fresh chicken manure (BioFum). BioFum significantly increased the soil's NH4+-N, NO3--N, available P and K and organic matter. Fusarium spp. and Phytophthora spp. which are known to cause plant disease, were significantly decreased after BioFum. In addition, Biofum increased the soil's temperature, enhanced chlorophyll levels in the leaves of strawberry plants, and the soluble sugar and ascorbic acid content in strawberry fruit. We used high-throughput gene sequencing to monitor changes in the soil's bacterial and fungal communities. Although BioFum significantly decreased the diversity of these communities, it increased the relative abundance of some biological control agents in the phylum Actinobacteria and the genera Pseudomonas, Bacillus and Chaetomium. An increase in these biological control agents would reduce the incidence of soil-borne pathogens and plant disease. Although strawberry marketable yield using BioFum was higher in the first three years, the decline in the final two years could be due to the accumulation of P and K which may have delayed flowering and fruiting. Methods to overcome yield losses using BioFum need to be developed in the future. Our research, however, showed that BioFum enhanced soil fertility, reduced the presence of soil pathogens, increased the relative abundance of beneficial bacteria and fungi and improved strawberry quality. Unlike chemical soil treatments that can cause pest and disease resistance when used continuously over many years, our multi-year research program on BioFum showed that this treatment provided significant benefits to the soil, plant and strawberry fruit.


Assuntos
Agricultura , Agentes de Controle Biológico , Fragaria/microbiologia , Microbiologia do Solo , Bactérias/genética , Fungos/genética , Fusarium , Esterco , Micobioma , Phytophthora , Doenças das Plantas/microbiologia , Solo
9.
Sci Total Environ ; 675: 615-622, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31035200

RESUMO

Chloropicrin (Pic) and biofumigation are both considered effective chemical and non-chemical alternatives to methyl bromide, respectively, for controlling crop-limiting soil-borne pests and diseases. In this study, we evaluated the effects of Pic alone and 'chloropicrin alternated with biofumigation' (CAB) on the soil's physico-chemical properties and strawberry yield, as well as their effects on soil bacterial and fungal communities. The contents of NO3--N, available phosphorus and potassium, and electrical conductivity were all significantly increased when CAB was used. In addition, CAB also significantly increased the strawberry marketable yield. High-throughput gene sequencing showed the species abundance of some soil bacteria and fungi was significantly increased such as the phyla Proteobacteria, Bacteroidetes, Actinobacteria and Ascomycota when CAB was used. However, CAB decreased the relative abundance of the phyla Firmicutes, Chloroflexi, Gemmatimonadete and Zygomycota. These results indicated that CAB could improve the physico-chemical properties of soil for strawberry production, increase the genetic diversity of microbes in the soil and enhance marketable fruit yield.


Assuntos
Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Hidrocarbonetos Clorados , Microbiologia do Solo , Ascomicetos/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Firmicutes/crescimento & desenvolvimento , Fragaria/crescimento & desenvolvimento
10.
J Environ Manage ; 236: 687-694, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772726

RESUMO

Dimethyl disulfide (DMDS) is an alternative fumigant to methyl bromide that was phased out globally due to its stratospheric ozone-depleting properties. Covering the surface of the soil with a plastic tarpaulin or 'barrier film' when using a soil fumigant is typically used to retain fumigants in the soil and to reduce emissions. Emission levels depend on the film's permeability, which varies mainly according to the film's material, the type of fumigant and the environmental conditions. We used specialized laboratory equipment to test the permeability of four films to DMDS under similar temperature and relative humidity (RH) conditions present in the field: polyethylene (PE), polyvinyl chloride (PVC), polyvinylidene chloride (PVDC) and ethylene vinyl alcohol copolymer (EVOH). This report presents evidence that the influence of temperature and relative humidity on the permeability of four films to the fumigant DMDS: PE,PVC,PVDC, EVOH. This research confirmed that PE and PVC films are relatively permeable to DMDS and PVC was more unstable to a range of environmental condition than other three films; PVDC and EVOH films are relatively impermeable to the fumigant DMDS and the permeability of PVDC was more stable to a range of environmental conditions than EVOH. The cumulative emissions of DMDS from soil covered with PE, PVC, PVDC or EVOH were 21.38%, 27.51%, 1.59% and 1.52%, respectively. As the permeability of PVDC was more stable to a range of environmental conditions than EVOH, PVDC shows potential for use in the field with a volatile fumigant such as DMDS.


Assuntos
Fumigação , Poluentes do Solo , Dissulfetos , Umidade , Permeabilidade , Temperatura
11.
Environ Pollut ; 246: 264-273, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30557800

RESUMO

Many crops are produced using soil fumigation and chemical pesticides to control soil-borne fungi and bacterial diseases, nematodes and weeds. Fumigation of soil, however, may alter its ability to adsorb, degrade and volatilize pesticides, which can then change the potential for pesticides to leach into groundwater. Soil adsorption kinetics, Freundlich isothermal adsorption and pesticide degradation techniques were used to determine the potential for pesticides to pollute groundwater in fumigated soil. The effect on soil pesticide adsorption in different types of chloropicrin (CP) fumigated soils was also examined. We observed that the equilibrium adsorption (qe) decreased significantly at 24 h. Soil fumigation decreased the Freundlich Kf and Kfoc values, and increased the Freundlich exponent 1/n values, for pesticides in fumigated Beijing soil. Soil fumigation influenced the Kf of pendimethalin, oxyfluorfen and abamectin the most, which themselves had a larger Kf in untreated soil. This indicated that the greater the soil pesticide adsorption the greater the influence of a fumigation treatment on that pesticide. The Kf was decreased more in the Heilongjiang and Beijing CP-fumigated soils that had high organic carbon content compared to Hunan soil. Fumigation of the soil with CP extended the half-life values of fosthiazate (from 34.3 to 43.1 days) and azoxystrobin (from 52.9 to 64.2 days), which increased their potential to leach into groundwater. Famers should minimize the quantity of some pesticides applied to fumigated soil, or apply some pesticides 60 days after fumigation, in order to avoid ground water pollution when crops are grown in fields or greenhouses.


Assuntos
Poluição Ambiental/análise , Fumigação/métodos , Água Subterrânea/química , Praguicidas/análise , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , Adsorção , Compostos de Anilina/análise , Pequim , Éteres Difenil Halogenados/análise , Hidrocarbonetos Clorados/análise , Ivermectina/análogos & derivados , Ivermectina/análise , Compostos Organofosforados/análise , Pirimidinas/análise , Microbiologia do Solo , Estrobilurinas/análise , Tiazolidinas/análise
12.
Sci Total Environ ; 650(Pt 1): 44-55, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30196225

RESUMO

The fumigant 1,3-dichloropropene (1,3-D) is widely-used to control pathogenic bacteria, fungi, nematodes and insects in soil before a crop is planted. Although fumigants in general have been reported to have a 'fertilizer effect' in the soil by increasing nitrogen availability, little is known of how a specific fumigant such as 1,3-D affects available nitrogen. This study used real-time quantitative PCR (qPCR) and 16S rRNA gene amplicon sequencing techniques to investigate the effects of 1,3-D on microorganisms involved in nitrogen cycling that were present in 2 soils: Jiangxi lateritic red soil and Beijing fluvo-aquic soil. The fumigant 1,3-D temporarily decreased the abundance of 11 functional genes involved in nitrogen-fixing, nitrification and denitrification in both soil types. Different nitrogen cycling groups recovered to the unfumigated level in various incubation phases. Microorganisms containing nifH, nxrB, napA and qnorB genes were most vulnerable to 1,3-D fumigation. However, a stronger and longer inhibition effect of 1,3-D on these 11 functional genes was observed in Jiangxi soil than in Beijing soil. At the same time, the abundance of nifH, AOBamoA, nirS, qnorB and cnorB genes was significantly increased 59 days after 1,3-D fumigation. Fumigation with 1,3-D significantly reduced the nitrogen-fixing bacteria Azospirillum and Paenibacillus; the nitrifiers Nitrosomonas and Nitrospira; and the denitrifiers Pseudomonas, Paracoccus and Sphingomonas. Conversely, fumigation with 1,3-D increased the nitrogen-fixing bacteria Bradyrhizobium and Rhizobium; the nitrification bacteria Nitrosospira and Nitrolancea; and the denitrification bacteria Sphingobium, Alcanivorax, Bacillus, Streptomyces and Aeromonas. Fumigation with 1,3-D therefore caused significant shifts in the species composition and number of microbes directly involved in nitrogen cycling in the short-term. These results contribute toward a better understanding of the impact of 1,3-D fumigation on various types of soil nitrogen-cycling groups.

13.
Front Microbiol ; 9: 2529, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405582

RESUMO

The influence of soil fumigation on microorganisms involved in transforming nitrogen remains little understood, despite the use of fumigants for many decades to control soil-borne pathogens and plant-parasitic nematodes. We used real-time PCR (quantitative polymerase chain reaction) and 16S rRNA gene amplicon sequencing techniques to monitor changes in the diversity and community structure of microorganisms associated with nitrogen transfer after the soil was fumigated with dazomet (DZ). We also examined nitrous oxide (N2O) emissions from these microorganisms present in fumigated fluvo-aquic soil and lateritic red soil. Fumigation with DZ significantly reduced the abundance of 16S rRNA and nitrogen cycling functional genes (nifH, AOA amoA, AOB amoA, nxrB, narG, napA, nirK, nirS, cnorB, qnorB, and nosZ). At the same time, N2O production rates increased between 9.9 and 30 times after fumigation. N2O emissions were significantly correlated with NH 4 + , dissolved amino acids and microbial biomass nitrogen, but uncorrelated with functional gene abundance. Diversity indices showed that DZ temporarily stimulated bacterial diversity as well as caused a significant change in bacterial community composition. For example, DZ significantly decreased populations of N2-fixing bacteria Mesorhizobium and Paenibacillus, nitrifiers Nitrosomonas, and the denitrifiers Bacillus, Pseudomonas, and Paracoccus. The soil microbial community had the ability to recover to similar population levels recorded in unfumigated soils when the inhibitory effects of DZ fumigation were no longer evident. The microbial recovery rate, however, depended on the physicochemical properties of the soil. These results provided useful information for environmental safety assessments of DZ in China, for improving our understanding of the N-cycling pathways in fumigated soils, and for determining the potential responses of different N-cycling groups after fumigation.

14.
J Environ Qual ; 47(5): 1223-1231, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30272792

RESUMO

Dazomet (3,5-dimethyl-1,3,5-thiadiazinane-2-thione) is widely used as a soil fumigant for controlling soil-borne diseases and pests in China and other agricultural countries. The active ingredient of dazomet is its degradation product, methyl isothiocyanate. Little is known about the environmental conditions that affect the degradation of dazomet in soil. In this study, we conducted laboratory incubation experiments to test the effects of several environmental factors, including soil texture, water content, temperature, pH, and soil amendments, such as chicken manure or urea fertilizer, on the decomposition of dazomet. Results showed that dazomet degradation in soil is an abiotic process strongly dependent on soil texture, water content, temperature, and pH. Decomposition rates differed greatly in various soils, depending mainly on soil physicochemical properties such as pH and organic matter content. The degradation rate increased by 15 to 24 times and by 16 to 37 times when soil temperature increased from 5 to 45°C, and water content increased from 10 to 30%, respectively. Dazomet degraded faster in alkaline versus acidic soil. Both chicken manure and urea fertilizer moderately slowed dazomet degradation. Dazomet was degraded in soil mainly by hydrolysis. The results of our study contribute to a better understanding of the environmental behavior of dazomet, potentially leading to its more efficient, safe, profitable, and effective use by farmers.


Assuntos
Agricultura , Monitoramento Ambiental , Praguicidas/análise , Poluentes do Solo/análise , Tiadiazinas/análise , China , Fertilizantes/análise
15.
J Agric Food Chem ; 66(44): 11580-11591, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30339379

RESUMO

The mechanism of N2O production following chloropicrin (CP) fumigation was investigated in this study. Our results showed that CP fumigation increased N2O production from 23 to 25 times in comparison with the control and significantly decreased the abundance of 16S rRNA and N-cycling functional genes. CP also decreased the soil bacterial diversity and caused a shift in the community composition. The N2O emissions in fumigated soil were significantly correlated with soil environmental factors (NH4+, dissolved amino acid, microbial biomass nitrogen, and NO3-) but were not correlated with the abundance of functional genes. Metatranscriptomes and dual-label 15N-18O isotope analysis revealed that CP fumigation inhibited the expression of gene families involved in N2O production and sink processes and shifted the main pathway of N2O production from nitrification to denitrification. These results provided useful information for environmental safety assessments of CP in China, to improve our understanding of the N-cycling pathways in fumigated soils.


Assuntos
Hidrocarbonetos Clorados/química , Óxido Nitroso/química , Praguicidas/química , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , China , Desnitrificação , Fumigação , Hidrocarbonetos Clorados/farmacologia , Nitrificação , Praguicidas/farmacologia , Solo/química , Microbiologia do Solo
16.
PLoS One ; 13(6): e0188245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889848

RESUMO

BACKGROUND: Root-knot nematode (Meloidogyne spp., RKN) causes a disease that significantly reduces the yield of greenhouse cucumber crops year after year. Chemical control based on a single pesticide is now unreliable mainly due to pest resistance. Fumigant and non-fumigant pesticide combinations can potentially result in effective and economic RKN control. RESULTS: Combining the insecticide abamectin (ABM) with fumigants dazomet (DZ) or chloropicrin (CP) significantly extended the half-life of ABM by an average of about 1.68 and 1.56 times respectively in laboratory trials, and by an average of about 2.02 and 1.69 times respectively in greenhouse trials. Laboratory experiments indicated that all the low rate ABM combination treatments controlled RKN through a synergistic effect. ABM diffused into the nematode epidermis more rapidly when ABM was combined with DZ and CP, giving effective nematode control and an increase cucumber total yield, compared to the use of these products alone. ABM combined with CP or DZ produced significantly higher total cucumber yield than when these products were used alone. CONCLUSIONS: A low concentration of ABM combined with DZ in preference to CP would be an economic and practical way to control nematode and soilborne fungi in a greenhouse producing cucumbers.


Assuntos
Cucumis sativus/parasitologia , Hidrocarbonetos Clorados/metabolismo , Ivermectina/análogos & derivados , Nematoides/metabolismo , Solo/parasitologia , Tiadiazinas/metabolismo , Animais , Ivermectina/metabolismo
17.
Pestic Biochem Physiol ; 140: 90-96, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28755701

RESUMO

The antifungal activity of oils extracted from Eupatorium adenophorum was tested against five phytopathogens in vitro. Oil extracts inhibited the mycelial growth of Phytophthora capsici which causes phytophthora blight in pepper. The minimum inhibitory concentration of oils against P. capsici was 500µg/ml after 7days incubation. At the ultrastructural level, oil extracts caused complete disorganization of intracellular organelles, cytoplasm depletion, disruption of cytoplasmic membranes and the cell wall. Membrane permeability increased with the increasing concentration of oil extracts. These results suggested that these oil extracts exhibited multiple modes of action including disruption of the cell membrane system. Furthermore, oil extracts combined with synthetic fungicides synergistically inhibited mycelial growth of P. capsici, which creates the possibility of reducing fungicide concentration needed to successfully control phytophthora blight in commercial pepper production. This study's use of multiple methods of analysis has increased our understanding of the mode of action of E. adenophorum oil extracts against P. capsici.


Assuntos
Ageratina/química , Antifúngicos/farmacologia , Phytophthora/efeitos dos fármacos , Óleos de Plantas/farmacologia , Antifúngicos/química , Folhas de Planta , Óleos de Plantas/química
18.
PLoS One ; 12(5): e0176126, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467445

RESUMO

Oils extracted from the leaves of Eupatorium adenophorum were tested in vitro and in vivo against the soilborne pathogen Pythium myriotylum which causes soft rot, a devastating disease of commercial ginger production in China. Twelve compounds accounting for 99.15% of the total oil composition were identified by GC-MS. The major components were 10Hß-9-oxo-agerophorone (37.03%), 10Hα-9-oxo-agerophorone (37.73%) and 9-oxo-10, 11-dehydro-agerophorone (23.41%). Antifungal activity was tested by the poisoned food technique against P. myriotylum, indicating minimum inhibitory concentrations of 100µg/ml after 7 days incubation. In addition, the oil extracts greatly inhibited the formation of both wet and dry mycelial biomass. The combination of E. adenophorum oil extracts and synthetic fungicides showed a strong synergistic effect, inhibiting the mycelial growth in in vitro assays. The synergistic effect of oil extracts with fungicides could allow fungicides to be used at reduced rates in the future which has environmental advantages. Oil extracts applied at 160 and 200µg/ml concentrations to ginger rhizomes before inoculation with P. myriotylum significantly reduced the infection rate in ginger. Examination by light and transmission electron microscopy revealed that oil extracts caused swelling of the hyphae, disruption of the cell wall, degradation of the cytoplasmic organelles and shortening of the cytoplasmic inclusion. These results suggested that the plasma membrane and endomembrane systems of P. myriotylum were severely damaged by the oil extracts of E. adenophorum which offer significant potential for use as a fungicide to control P. myriotylum.


Assuntos
Ageratina/química , Antifúngicos/farmacologia , Folhas de Planta/química , Óleos de Plantas/farmacologia , Pythium/efeitos dos fármacos , Zingiber officinale/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Controle Biológico de Vetores , Pythium/patogenicidade
19.
ACS Appl Mater Interfaces ; 9(12): 10366-10370, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28290653

RESUMO

Main-chain nonlinear optical polymers based on novel chromophores with special structures presented good solubility in most of the organic solvents. Polymers PE-1 and PE-2 attained the thermal decomposition temperatures of 305 and 223 °C and glass transition temperatures of 113 and 108 °C, and exhibited only negligible decay in the SHG signal baked at 85 °C over hundreds of hours, respectively. The SHG coefficients of poled films from polymers PE-1 and PE-2 were 26.3 and 35.8 pm/V, respectively. These results indicated that this class of polymers can be used in the preparation of organic electro-optic devices.

20.
Chemosphere ; 175: 459-464, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28242461

RESUMO

Chloropicrin retards the conversion of ammonia to nitrite during the nitrification process in soil. In our study, the dynamic effect of chloropicrin fumigation on soil nitrification was evaluated in five different soil types to identify relationships between soil properties and the effect of fumigation on nitrification. Chloropicrin significantly inhibited nitrification in all soils; however, the recovery of nitrification varied greatly between the soils. Following chloropicrin fumigation, nitrification recovered to the control level in all soils, except in the acidic Guangxi soil. Nitrification recovered faster in fumigated sandy loam Beijing soil than in the other four fumigated soils. Soil texture and pH were two important factors that influenced chloropicrin's inhibitory effect on nitrification. An S-shaped function was fitted to soil NO3--N content to assess the nitrification recovery tendency in different soils. The time taken to reach maximum nitrification (tmax) ranged from 2.4 to 3.0 weeks in all unfumigated soils. Results demonstrated that tmax was greater in all fumigated soils than in untreated soils. Correlation calculations showed that tmax was strongly correlated to soil texture. The correlation analysis results indicated that the recovery rate of nitrification after chloropicrin fumigation is much faster in sandy loam soil than silty loam soil.


Assuntos
Fumigação/métodos , Hidrocarbonetos Clorados/química , Nitrificação , Solo/normas , Amônia/análise , China , Nitritos/análise , Praguicidas/análise , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA