Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710705

RESUMO

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Assuntos
Argininossuccinato Sintase , Proliferação de Células , Fosfoglicerato Desidrogenase , Serina , Neoplasias de Mama Triplo Negativas , Fosfoglicerato Desidrogenase/metabolismo , Fosfoglicerato Desidrogenase/genética , Serina/metabolismo , Serina/biossíntese , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Animais , Argininossuccinato Sintase/metabolismo , Argininossuccinato Sintase/genética , Linhagem Celular Tumoral , Camundongos Nus , Ubiquitinação , Camundongos , Glicina/metabolismo
2.
Anal Chem ; 96(21): 8432-8440, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38709576

RESUMO

Cytoarchitectural staining is of great importance in disease diagnosis and cell biology research. This study developed user-friendly multifunctional red-emissive carbon dots (R-CDs) for rapid cell nucleus staining via targeting nuclear proteins. R-CDs, simply prepared by electrochemical treatment of 1,2,4-benzenetriamine, exhibit strong emission at 635 nm when excited at 507 nm. The R-CDs can rapidly stain the nucleus of human SH-SY5Y, HepG2, and HUH-7 cells with a high signal-to-noise ratio owing to fluorescence enhancement after entering the nucleus. Compared to conventional cytosolic dyes such as Hoechst and DAPI, R-CDs are cheaper, more highly dispersed in water, and more stable (requiring no stringent storage conditions). The R-CDs show stable optical properties with insignificant photobleaching over 7 days and salt resistance up to 2 M of NaCl. More importantly, R-CDs, possessing a positive charge, allow rapid staining of live cells (3 min) and dead cells (10 s) in saline. According to kinetic variation, R-CDs can distinguish live cells from dead cells. Staining exhibits high efficiency in onion epidermal cells, Aspergillus niger, Caenorhabditis elegans, and human spermatozoa. The mechanism for efficient staining is based on their fast accumulation in the nucleus due to their small size and positive charge and strong interaction with nuclear proteins at amino acid residues of histidine and arginine, resulting in fluorescence enhancement by dozens of times. The developed R-CDs do not bind to DNA and would not cause genetic damage and will find various safe applications in biological and medical fields.


Assuntos
Carbono , Núcleo Celular , Pontos Quânticos , Humanos , Carbono/química , Núcleo Celular/química , Núcleo Celular/metabolismo , Pontos Quânticos/química , Animais , Proteínas Nucleares/metabolismo , Proteínas Nucleares/análise , Corantes Fluorescentes/química , Coloração e Rotulagem , Caenorhabditis elegans/química , Cebolas/química , Cebolas/citologia
3.
Lett Appl Microbiol ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719546

RESUMO

Aeromonas dhakensis is reported as an emerging pathogenic species within the genus Aeromonas and is widely distributed in tropical coastal areas. This study provided a detailed description and characterization of a strain of A. dhakensis (202108B1) isolated from diseased Ancherythroculter nigrocauda in an inland region of China. Biochemical tests identified the isolate at the genus level, and the further molecular analysis of concatenated housekeeping gene sequences revealed that the strain belonged to the species A. dhakensis. The isolated A. dhakensis strain was resistant to five antibiotics, namely, penicillin, ampicillin, clindamycin, cephalexin and imipenem, while it was susceptible or showed intermediate resistance to most of the other fifteen tested antibiotics. The isolated strain of A. dhakensis caused acute haemorrhagic septicaemia and tissue damage in artificially infected A. nigrocauda, with a median lethal dose of 7.76×104 CFU/fish. The genome size of strain 202108B1 was 5043286 bp, including one chromosome and four plasmids. This is the first detailed report of the occurrence of infection caused by an A. dhakensis strain causing infection in an aquaculture system in inland China, providing important epidemiological data on this potential pathogenic species.

4.
Acta Pharm Sin B ; 14(4): 1787-1800, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572091

RESUMO

Radiotherapy (RT) is one of the most feasible and routinely used therapeutic modalities for treating malignant tumors. In particular, immune responses triggered by RT, known as radio-immunotherapy, can partially inhibit the growth of distantly spreading tumors and recurrent tumors. However, the safety and efficacy of radio-immunotherapy is impeded by the radio-resistance and poor immunogenicity of tumor. Herein, we report oxaliplatin (IV)-iron bimetallic nanoparticles (OXA/Fe NPs) as cascade sensitizing amplifiers for low-dose and robust radio-immunotherapy. The OXA/Fe NPs exhibit tumor-specific accumulation and activation of OXA (II) and Fe2+ in response to the reductive and acidic microenvironment within tumor cells. The cascade reactions of the released metallic drugs can sensitize RT by inducing DNA damage, increasing ROS and O2 levels, and amplifying the immunogenic cell death (ICD) effect after RT to facilitate potent immune activation. As a result, OXA/Fe NPs-based low-dose RT triggered a robust immune response and inhibited the distant and metastatic tumors effectively by a strong abscopal effect. Moreover, a long-term immunological memory effect to protect mice from tumor rechallenging is observed. Overall, the bimetallic NPs-based cascade sensitizing amplifier system offers an efficient radio-immunotherapy regimen that addresses the key challenges.

5.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675633

RESUMO

Surface charges of catalysts have important influences on the thermodynamics and kinetics of electrochemical reactions. Herein, we develop a modified version of the grand-canonical potential kinetics (GCP-K) method based on density functional theory (DFT) calculations to explore the effect of surface charges on reaction thermodynamics and kinetics. Using the hydrogen evolution reaction (HER) on the Pt(111) surface as an example, we show how to track the change of surface charge in a reaction and how to analyze its influence on the kinetics. Grand-canonical calculations demonstrate that the optimum hydrogen adsorption energy on Pt under the standard hydrogen electrode condition (SHE) is around -0.2 eV, rather than 0 eV established under the canonical ensemble, due to the high density of surface negative charges. By separating the surface charges that can freely exchange with the external electron reservoir, we obtain a Tafel barrier that is in good agreement with the experimental result. During the Tafel reaction, the net electron inflow into the catalyst leads to a stabilization of canonical energy and a destabilization of the charge-dependent grand-canonical component. This study provides a practical method for obtaining accurate grand-canonical reaction energetics and analyzing the surface charge induced changes.

6.
Heliyon ; 10(6): e27424, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515658

RESUMO

The present article conducts an investigation into the phenomenon of exponential stability within singular perturbed delayed systems, incorporating time-varying parameters. Singularly perturbed systems serve as essential tools in modeling intricate systems characterized by multiple time scales, wherein one subsystem exhibits significantly faster evolution than the others. The presence of small delays introduces complexities, influencing both state derivatives and delays, further accentuating the intricacies of the system. Drawing upon the principles of singular perturbation theory, the article introduces a novel approach to analyzing the stability of these complex systems, eschewing the conventional assumption of exponential stability in the fast subsystem. Within the scope of this study, we propose a rigorous stability analysis, utilizing Linear Matrix Inequality (LMI) methods, while considering time-varying parameters that exert substantial influence on the system's dynamics. The proposed methodology enables the exploration of system stability beyond conventional assumptions, imparting valuable insights into the behavior of singular perturbed delayed systems amidst varying conditions. Through extensive numerical simulations, the effectiveness and robustness of the approach are validated, illuminating the stability properties of these intricate systems. Comparative studies with existing techniques, which assume exponential stability in the fast subsystem, demonstrate the distinct advantages and uniqueness of the presented approach. The findings underscore the significance of accounting for time-varying parameters in achieving a comprehensive understanding of the exponential stability inherent in singular perturbed delayed systems. This research makes substantial contributions to the field of system stability analysis, particularly in the context of singular perturbed delayed systems featuring time-varying parameters. The originality of our approach lies in introducing a comprehensive analysis framework that overcomes the limitations of existing methodologies. By integrating a novel stability analysis method based on Linear Matrix Inequalities (LMIs), we offer a fresh perspective on achieving exponential stability in such complex systems. Significantly, our work addresses a critical gap in current literature by challenging the assumption of exponential stability in the fast subsystem, a key feature of singularly perturbed systems. Through a meticulous examination of time-varying parameters, we unveil their profound impact on system dynamics, thus enriching the understanding of stability behaviors. The potential real-world applications of our findings span diverse fields, ranging from engineering to mathematical modeling. Performance metrics are a key focal point of our research. Numerical simulations employing our proposed LMIs serve as a robust benchmark, demonstrating the superior stability achieved in comparison to existing methods. This performance-driven evaluation ensures the practical applicability and reliability of our analysis approach across various scenarios.

7.
Int J Biol Macromol ; 264(Pt 1): 130563, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431018

RESUMO

Both sensing and removal of Hg(II) are important to environment and human health in view of the high toxicity and wide applications of mercury in industry. This study aims to develop a cellulose-based fluorescent aerogel for simultaneous Hg(II) sensing and removal via conveniently cross-linking two nanomaterials cellulose nanocrystals and bovine serum albumin-functionalized gold nanoclusters (BSA-AuNCs) with epichlorohydrin. The aerogel exhibited strong homogeneous red fluorescence at the non-edged regions under UV light due to highly dispersed BSA-AuNCs in it, and its fluorescence could be quenched by Hg(II). Through taking pictures with a smartphone, Hg(II) in the range of 0-1000 µg/L could be quantified with a detection limit of 12.7 µg/L. The sorption isotherm of Hg(II) by the aerogel followed Freundlich model with an equation of Qe = 0.329*Ce1/0.971 and a coefficient of 0.999. The maximum sorption capacity can achieve 483.21 mg/g for Hg(II), much higher than many reported sorbents. The results further confirmed Hg(II) strong sorption and sensitive detection are due to its complexation and redox reaction with the chemical groups in aerogels and its strong fluorescence quenching effect. Due to extensive sources and low cost, cellulose is potential to be developed into aerogels with multiple functions for sophisticated applications.


Assuntos
Mercúrio , Nanopartículas Metálicas , Humanos , Celulose , Nanopartículas Metálicas/química , Mercúrio/química , Corantes Fluorescentes/química , Ouro/química , Espectrometria de Fluorescência/métodos
8.
Opt Express ; 32(5): 7318-7331, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439415

RESUMO

Highly tunable electromagnetically induced transparency (EIT) with high-quality-factor (Q-factor) excited by combining with the quasi-bound states in the continuum (quasi-BIC) resonances is crucial for many applications. This paper describes all-dielectric metasurface composed of silicon cuboid etched with two rectangular holes into a unit cell and periodically arranged on a SiO2 substrate. By breaking the C2 rotational symmetry of the unit cell, a high-Q factor EIT and double quasi-BIC resonant modes are excited at 1224.3, 1251.9 and 1299.6 nm with quality factors of 7604, 10064 and 15503, respectively. We show that the EIT resonance is caused by destructive interference between magnetic dipole resonances and quasi-BIC dominated by electric quadrupole. Toroidal dipole (TD) and electric quadrupole (EQ) dominate the other two quasi-BICs. The EIT window can be successfully modulated with transmission intensity from 90% to 5% and modulation depths ranging from -17 to 24 dB at 1200-1250 nm by integrating the metasurface with an epsilon-near-zero (ENZ) material indium tin oxide (ITO) film. Our findings pave the way for the development of applications such as optical switches and modulators with many potential applications in nonlinear optics, filters, and multichannel biosensors.

9.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396695

RESUMO

In recent years, gold nanomaterials have become a hot topic in photothermal tumor therapy due to their unique surface plasmon resonance characteristics. The effectiveness of photothermal therapy is highly dependent on the shape and size of gold nanoparticles. In this work, we investigate the photothermal therapeutic effects of four different sizes of gold nanorods (GNRs). The results show that the uptake of short GNRs with aspect ratios 3.3-3.5 by cells is higher than that of GNRs with aspect ratios 4-5.5. Using a laser with single pulse energy as low as 28 pJ laser for 20 s can induce the death of liver cancer cells co-cultured with short GNRs. Long GNRs required twice the energy to achieve the same therapeutic effect. The dual-temperature model is used to simulate the photothermal response of intracellular clusters irradiated by a laser. It is found that small GNRs are easier to compact because of their morphological characteristics, and the electromagnetic coupling between GNRs is better, which increases the internal field enhancement, resulting in higher local temperature. Compared with a single GNR, GNR clusters are less dependent on polarization and wavelength, which is more conducive to the flexible selection of excitation laser sources.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Nanotubos , Terapia Fototérmica , Ouro/farmacologia , Hipertermia Induzida/métodos , Nanopartículas Metálicas/uso terapêutico
10.
Opt Lett ; 49(2): 290-293, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194550

RESUMO

The group velocity (GV) modulation of space-time wave packets (STWPs) along the transverse and longitudinal directions in free space is constrained by various factors. To surmount this limitation, a technique called "flying focus" has been developed, which enables the generation of laser pulses with dynamic focal points that can propagate at arbitrary velocities independent of GV. In this Letter, we propose a (3+1)-dimensional Pearcey-Gauss wave packet based on the "flying focus" technique, which exhibits superluminal propagation, transverse focus oscillation, and longitudinal periodic autofocusing. By selecting appropriate parameters, we can flexibly manipulate the position, the size, and the number of focal points- or make the wave packet follow a desired trajectory. This work may pave the way for the advancement of space-time structured light fields.

11.
New Phytol ; 241(5): 2209-2226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084045

RESUMO

R-loops, three-stranded nucleic acid structures consisting of a DNA: RNA hybrid and displaced single-stranded DNA, play critical roles in gene expression and genome stability. How R-loop homeostasis is integrated into chloroplast gene expression remains largely unknown. We found an unexpected function of FtsHi1, an inner envelope membrane-bound AAA-ATPase in chloroplast R-loop homeostasis of Arabidopsis thaliana. Previously, this protein was shown to function as a component of the import motor complex for nuclear-encoded chloroplast proteins. However, this study provides evidence that FtsHi1 is an ATP-dependent helicase that efficiently unwinds both DNA-DNA and DNA-RNA duplexes, thereby preventing R-loop accumulation. Over-accumulation of R-loops could impair chloroplast transcription but not necessarily genome integrity. The dual function of FtsHi1 in both protein import and chloroplast gene expression may be important to coordinate the biogenesis of nuclear- and chloroplast-encoded subunits of multi-protein photosynthetic complexes. This study suggests a mechanical link between protein import and R-loop homeostasis in chloroplasts of higher plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Transporte Proteico , Estruturas R-Loop , RNA/metabolismo , RNA Helicases/genética
12.
Opt Lett ; 48(22): 6004-6007, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966774

RESUMO

It is a highly significant area of research to investigate how to effectively enhance the focusing ability of abruptly auto-focusing beams (AAFBs) while extending the focal length. We introduce a dual-region parabolic trajectory offset modulation to auto-focusing ring Pearcey beams (RPBs), presenting a novel, to the best of our knowlege, approach to extend the focal length while greatly enhancing their auto-focusing capabilities. Unlike directly introducing a linear chirp, which inevitably shortens the focal length to enhance the auto-focusing ability and allows only single focusing in the RPBs, our scheme can achieve a multi-focusing effect. Furthermore, we have experimentally generated such a beam, verifying our theoretical predictions. Our findings offer promising possibilities for generating optical bottles, trapping multiple particles periodically, and enhancing free-space optical communication capabilities.

13.
Autophagy ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974331

RESUMO

Extracellular vesicle DNAs (evDNAs) hold significant diagnostic value for various diseases and facilitate transcellular transfer of genetic material. Our study identifies transcription factor FOXM1 as a mediator for directing chromatin genes or DNA fragments (termed FOXM1-chDNAs) to extracellular vesicles (EVs). FOXM1 binds to MAP1LC3/LC3 in the nucleus, and FOXM1-chDNAs, such as the DUX4 gene and telomere DNA, are designated by FOXM1 binding and translocated to the cytoplasm before being released to EVs through the secretory autophagy during lysosome inhibition (SALI) process involving LC3. Disrupting FOXM1 expression or the SALI process impairs FOXM1-chDNAs incorporation into EVs. FOXM1-chDNAs can be transmitted to recipient cells via EVs and expressed in recipient cells when they carry functional genes. This finding provides an example of how chromatin DNA fragments are specified to EVs by transcription factor FOXM1, revealing its contribution to the formation of evDNAs from nuclear chromatin. It provides a basis for further exploration of the roles of evDNAs in biological processes, such as horizontal gene transfer.

14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1352-1357, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37846684

RESUMO

OBJECTIVE: To investigate the efficacy and safety of CD19/CD3 bisecific monoclonalantibody (Blinatumomab) in the treatment of adult patients with relapsed / refractory Ph-negative acute B-lymphoblastic leukemia (R/R-B-ALL). METHODS: Ten adult R/R B-ALL patients were all treated with Blinatumomab. Each treatment cycle was administered for 28 days and stopped for 14 days. The dose was 9 µg/day for the first 7 days of cycle 1, and 28 µg/day for days 8-28 if there were no adverse reactions. From the second cycle onwards, the daily dose was 28 µg. The remission, survival time (EFS and OS) and adverse reactions were observed after treatment. RESULTS: Nine patients with curative effect could be evaluated. Four patients achieved CR after one course, and one patient achieved CR after two courses, the overall remission rate was 55.6%(5/9). The median EFS was 4 months (1-12 months), and the median OS was 6 months (2-44 months). Nine of the 10 patients had fever of different degrees. Serum levels of cytokines such as IL-6, IL-10, IL-17 and IFN-γ increased. Two patients resumed medication after 1 week of treatment interruption due to neurotoxicity and CRS, respectively. One patient was discontinued due to grade 3 CRS and died of tropical candidiaemia. CONCLUSION: Blinatumomab has a good response rate in the treatment of relapsed/refractory B-ALL patients, but the duration of remission is shorter. Drug-related adverse reactions are mainly CRS and neurotoxicity. Inflammatory factors IL-6, IL-10, IL-17 and IFN-γ can be used as indicators to monitor CRS. The bisspecificity MAbs provide an opportunity for subsequent allogeneic hematopoietic stem cell transplantation in R/R-B-ALL patients.

15.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37811830

RESUMO

The surface charges of catalysts have intricate influences on the thermodynamics and kinetics of electrochemical reactions. Herein, we develop a grand-canonical iteration method based on density functional theory calculations to explore the effect of surface charges on reaction kinetics beyond the traditional Butler-Volmer picture. Using the hydrogen evolution reaction on S vacancies of MoS2 as an example, we show how to track the change of surface charge in a reaction and to analyze its influence on the kinetics. Protons adsorb on S vacancies in a tough and charge-insensitive water splitting manner, which explains the observed large Tafel slope. Grand-canonical calculations report an unanticipated surface charge-induced change of the desorption pathway from the Heyrovsky route to a Volmer-Tafel route. During an electrochemical reaction, a net electron inflow into the catalyst may bring two effects, i.e., stabilization of the canonical energy and destabilization of the charge-dependent grand-canonical part. On the contrary, a net outflow of electrons from the catalyst can reverse the two effects. This surface charge effect has substantial impacts on the overpotential and the Tafel slope. We suggest that the surface charge effect is universal for all electrochemical reactions and significant for those involving interfacial proton transfers.

16.
Risk Anal ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853542

RESUMO

Recent events, including COVID-19, extreme floods, and explosion accidents, commonly induced localized closures and disruptions of urban road networks (URNs), resulting in significant impacts on human mobility and socio-economic activities. Existing studies on URN resilience to those events mainly took few cases for empirical studies, limiting our understanding on the URN resilience patterns across different cities. By conducting a large-scale nationwide resilience analysis of URNs in 363 cities in mainland China, this study attempts to uncover the resilience patterns of URNs against the worst-case single (SLDs) and multiple localized disruptions (MLDs). Results show that the distance from the worst-case SLD to the city center would be less than 5 km in 62.3% cities, as opposed to more than 15 km in 14.3% cities. Moreover, the average road network resilience of cities in western China could be 7% and 13% smaller than that of the eastern cities under the worst-case SLDs and MLDs, respectively. This inequality in the worst-case resilience is partly attributable to variations in urban socio-economic, infrastructure-related, and topographic factors. These findings could inspire nationwide pre-disaster mitigation strategies to cope with localized disruptions and help transfer insights for mitigation strategies against disruptive events across cities.

17.
BMC Med Genomics ; 16(1): 258, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875874

RESUMO

BACKGROUND: The role of the basal metabolic rate (BMR) in osteoarthritis (OA) remains unclear, as previous retrospective studies have produced inconsistent results. Therefore, we performed a Mendelian randomization (MR) study to systematically investigate the causal relationship between the BMR and OA. METHODS: Single-nucleotide polymorphism (SNP) data related to BMR and OA were collected in a genome-wide association study. Using OA as the outcome variable and BMR as the exposure factor, SNPs with strong correlation with the BMR as the tool variable were screened. The correlation between the BMR and OA risk was evaluated using the inverse-variance weighted method, and heterogeneity and pleiotropy were evaluated using a sensitivity analysis. RESULTS: There was a potential causal relationship between the BMR and OA risk (odds ratio [OR], 1.014; 95% confidence interval [CI], 1.008-1.020; P = 2.29e - 6). A causal relationship was also revealed between the BMR and knee OA (OR, 1.876; 95% CI, 1.677-2.098; P = 2.98e - 28) and hip OA (OR, 1.475; 95% CI, 1.290-1.686; P = 1.26e - 8). Sensitivity analysis confirmed the robustness of these results. CONCLUSION: Here, we identified a latent causal relationship between the BMR and the risk of OA. These results suggest that the risk of OA in the hip or knee joint may be reduced by controlling the BMR.


Assuntos
Osteoartrite do Quadril , Osteoartrite do Joelho , Humanos , Metabolismo Basal , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Osteoartrite do Joelho/genética , Polimorfismo de Nucleotídeo Único
18.
Environ Geochem Health ; 45(12): 9669-9690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801211

RESUMO

The organochlorine pesticides (OCPs) are with features of persistence, high toxicity, bioaccumulation and adverse impact on ecosystems and human beings. Although OCPs pollutions have been observed in the plateau lakes, comprehensive understandings in the distribution characteristics and human health risks of OCPs in these valuable but fragile ecosystems are limited. We here investigated the distribution, bioaccumulation process and health risks of OCPs in the Jianhu lake, a representative plateau lake in China. The endrin ketone, endrin aldehyde and heptachlor were the most dominant species in surface and columnar sediments. Their total contents ranged between 0 ~ 1.92 × 103 ng·g-1. The distribution of OCPs in sediment cores combined with chronology information indicated that the fast accumulation of OCPs happened during the last decades. Combining the distribution features of OCPs in different sources with mixing model results of carbon isotope (δ13C), farming area was identified as the main source (46%), and the OCPs were transported to lake by inflow-rivers (37%). The enrichment of OCPs in sediments caused considerable bioaccumulation of OCPs in local fish (∑OCPs 0-3199.93 ng·g-1, dw) with the bio-sediment accumulation factor (BSAF) ranging from ND to 9.41. Moreover, growing time was another key factor governing the accumulation in specific species (Carassius auratus and Cyprinus carpio). Eventually, the carcinogenic risk index (CRI) and exposure risk index (ERI) of the endrin category and aldrin exceeded the reference value, indicating relatively high health risks through consumption of fish. Overall, this study systematically illustrated the bioaccumulation process and health risks of OCPs in the typical plateau lake, providing theoretical support for the better protection of this kind of lakes.


Assuntos
Carpas , Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Animais , Humanos , Lagos , Endrin , Ecossistema , Bioacumulação , Poluentes Químicos da Água/análise , Praguicidas/análise , Hidrocarbonetos Clorados/análise , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos
19.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 992-998, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37551467

RESUMO

OBJECTIVE: To detect the gene mutations in patients with myeloid malignancies by high-throughput sequencing and explore the correlation between gene mutations and prognosis. METHODS: A retrospective analysis was performed on 56 patients with myeloid malignancies who were hospitalized in the department of hematology, Peking University International Hospital from January 2020 to May 2021. The genetic mutations of the patients were detected by next-generation sequencing technology, and the correlation between the genetic mutations and prognosis of myeloid malignancies was analyzed. RESULTS: In 56 patients, the number of mutated genes detected in a single patient is 0-9, with a median of 3. Sequencing results showed that the most common mutated genes were RUNX1(21.4%), TET2(17.9%), DNMT3A(17.9%), TP53(14.3%) and ASXL1(14.3%), among which the most common mutations occurred in the signaling pathway-related genes (23.3%) and the transcription factor genes (18.3%). 84% of the patients carried multiple mutated genes (≥2), and correlation analysis showed there were obvious co-occurring mutations between WT1 and FLT3, NPM1 and FLT3-ITD, and MYC and FLT3. TP53 mutation was more common in MDS patients.The overall survival time of patients with NRAS mutation was significantly shortened (P =0.049). The prognosis of patients with TP53 mutation was poor compared with those without TP53 mutation, but the difference wasn't statistically significant (P =0.08). CONCLUSION: The application of next-generation sequencing technology is of great significance in myeloid malignancies, which is helpful to better understand the pathogenesis of the disease, to judge the prognosis and to find possible therapeutic targets.


Assuntos
Leucemia Mieloide Aguda , Transtornos Mieloproliferativos , Humanos , Leucemia Mieloide Aguda/genética , Nucleofosmina , Prognóstico , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala , Mutação
20.
Cell Death Dis ; 14(8): 533, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598210

RESUMO

Disrupting protein-protein interactions (PPIs) has emerged as a promising strategy for cancer drug development. Interfering peptides disrupting PPIs can be rationally designed based on the structures of natural sequences mediating these interactions. Transcription factor FOXM1 overexpresses in multiple cancers and is considered an effective target for cancer therapeutic drug development. Using a rational design approach, we have generated a peptide library from the FOXM1 C-terminal sequence and screened FOXM1-binding peptides. Combining FOXM1 binding and cell inhibitory results, we have obtained a FOXM1-targeting interfering peptide M1-20 that is optimized from the natural parent peptide to the D-retro-inverso peptide. With improved stability characteristics, M1-20 inhibits proliferation and migration, and induces apoptosis of cancer cells. Mechanistically, M1-20 inhibits FOXM1 transcriptional activities by disrupting its interaction between the MuvB complex and the transcriptional co-activator CBP. These are consistent with the results that M1-20 suppresses cancer progression and metastasis without noticeable toxic and side effects in wild-type mice. These findings reveal that M1-20 has the potential to be developed as an anti-cancer drug candidate targeting FOXM1.


Assuntos
Neoplasias , Animais , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Peptídeos/farmacologia , Adjuvantes Imunológicos , Apoptose , Sistemas de Liberação de Medicamentos , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA