Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Cancer Med ; 13(17): e70221, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39279741

RESUMO

OBJECTIVE: To explore the survival effect of thoracic gross tumor volume (GTV) in three-dimensional (3D) radiotherapy for stage IV non-small cell lung cancer (NSCLC). METHODS: The data cases were obtained from a single-center retrospective analysis. From May. From 2008 to August 2018, 377 treatment criteria were enrolled. GTV was defined as the volume of the primary lesion and the hilus as well as the mediastinal metastatic lymph node. Chemotherapy was a platinum-based combined regimen of two drugs. The number of median chemotherapy cycles was 4 (2-6), and the cut-off value of the planning target volume (PTV) dose of the primary tumor was 63 Gy (30-76.5 Gy). The cut-off value of GTV volume was 150 cm3 (5.83-3535.20 cm3). RESULTS: The survival rate of patients with GTV <150 cm3 is better than patients with GTV ≥150 cm3. Multivariate Cox regression analyses suggested that peripheral lung cancer, radiation dose ≥63 Gy, GTV <150 cm3, 4-6 cycles of chemotherapy, and CR + PR are good prognostic factors for patients with stage IV non-small cell lung cancer. The survival rate of patients with GTV <150 cm3 was longer than patients with ≥150 cm3 when they underwent 2 to 3 cycles of chemotherapy concurrent 3D radiotherapy (p < 0.05). When performing 4 to 6 cycles of chemotherapy concurrent 3D radiotherapy, there was no significant difference between <150 cm3 and ≥150 cm3. CONCLUSIONS: The volume of stage IV NSCLC primary tumor can affect the survival of patients. Appropriate treatment methods can be opted by considering the volume of tumors to extend patients' lifetime to the utmost.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiorradioterapia , Neoplasias Pulmonares , Estadiamento de Neoplasias , Carga Tumoral , Humanos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Feminino , Quimiorradioterapia/métodos , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Idoso de 80 Anos ou mais , Prognóstico , Taxa de Sobrevida
2.
Adv Ther ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276185

RESUMO

INTRODUCTION: Iparomlimab (QL1604) is a humanized immunoglobulin G4 mAb against programmed cell death protein 1 (PD-1). Here, we report the preliminary efficacy, safety, pharmacokinetics, and immunogenicity of iparomlimab in patients with advanced solid tumors. METHODS: In this open-label, phase 1c study, patients with advanced or metastatic solid tumors, either failed or had no standard therapies available, were enrolled and received intravenous iparomlimab at 3 mg/kg once every 3 weeks. The primary efficacy endpoint was the objective response rate (ORR) assessed by the investigator per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. RESULTS: Between July 20, 2020, and September 6, 2021, 71 patients were enrolled and received at least one dose of iparomlimab. The ORR was 9.9% (7/71) and disease control rate was 36.6% (26/71). Median duration of response of all responders was 10.7 months [95% confidence interval (CI), 1.4-not estimable]. Additionally, the median time to progression, progression-free survival, and overall survival were 1.4 months (95% CI, 1.4-2.8), 1.4 months (95% CI, 1.4-2.7), and 9.7 months (95% CI, 7.2-15.3), respectively. A total of 52 (73.2%) patients experienced treatment-related adverse events (TRAEs) (grade ≥ 3, 19.7%). The most common TRAE (≥ 10%) was anemia (18.3%). A total of 20 (28.2%) experienced immune-related adverse events (grade ≥ 3, 7.0%). TRAEs leading to discontinuation of study drug occurred in 4 (5.6%) patients, including immune-mediated myocarditis (2 patients), Guillain-Barré syndrome (1 patient), and diarrhea (1 patient). CONCLUSIONS: Iparomlimab showed preliminary clinical activity and had a manageable safety profile in patients with advanced solid tumors. These results support further investigation of iparomlimab as monotherapy or in combination therapy in advanced solid tumors. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT05801094. Retrospectively registered in 2023-03-24.

3.
Bioorg Chem ; 151: 107714, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39167867

RESUMO

Aberrant activation or mutation of the EGFR-PI3K-Akt-mTOR signaling pathway has been implicated in a wide range of human cancers, especially non-small-cell lung cancer (NSCLC). Thus, dual inhibition of EGFR and PI3K has been investigated as a promising strategy to address acquired drug resistance resulting from the use of tyrosine kinase inhibitors. A series of dual EGFR/PI3Kα inhibitors was synthesized using pharmacophore hybridization of the third-generation EGFR inhibitor olmutinib and the PI3Kα selective inhibitor TAK-117. The optimal compound 30k showed potent kinase inhibitory activities with IC50 values of 3.6 and 30.0 nM against EGFRL858R/T790M and PI3Kα, respectively. Compound 30k exhibited a significant antiproliferative effect in NCI-H1975 cells with a higher selectivity profile than olmutinib. The potential antitumor mechanism, molecular binding modes, and in vitro metabolic stability of compound 30k were also clarified.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Humanos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/síntese química , Inibidores de Fosfoinositídeo-3 Quinase/química , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular
4.
Virology ; 598: 110196, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098183

RESUMO

Reovirus (Reo) has shown promising potential in specifically killing tumor cells, and offering new possibilities for ovarian cancer (OC) treatment. However, neutralizing antibodies in the ascites from OC patients greatly limit the further application of Reo. In this study, we employed cationic liposomes (Lipo) to deliver Reo, significantly enhancing its ability to enter OC cells and its effectiveness in killing these cells under ascitic conditions. Pre-treatment with the MßCD inhibitor notably decreased Reo-mediated tumor cell death, indicating that Lipo primarily enables Reo's cellular uptake through caveolin-mediated endocytosis. Our results demonstrate that Lipo effectively facilitates the entry of Reo into the cytoplasm and triggers cell apoptosis. The above findings provide a new strategy to overcome the obstacle of neutralizing antibodies in the clinical application of Reo.


Assuntos
Anticorpos Neutralizantes , Lipossomos , Neoplasias Ovarianas , Reoviridae , Feminino , Humanos , Neoplasias Ovarianas/imunologia , Anticorpos Neutralizantes/imunologia , Reoviridae/imunologia , Reoviridae/fisiologia , Linhagem Celular Tumoral , Terapia Viral Oncolítica/métodos , Apoptose , Animais , Cátions , Vírus Oncolíticos/imunologia , Camundongos
5.
BMC Cancer ; 24(1): 1053, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187790

RESUMO

PURPOSE: The most appropriate time of primary tumor radiotherapy in non-small cell lung cancer(NSCLC) with EGFR-TKIs remains unclear. The aim of this study was to investigate the effect of the time factor of primary tumor radiotherapy on long-term overall survival(OS)and provide a theoretical basis for further clinical research. PATIENTS AND METHODS: In total, 238 patients with EGFR-TKIs and OS ≥ 12 months were statistically analysed. Patients were grouped: the D group without primary tumor radiotherapy and the R group with it.The R group were divided into three groups according to the interval between the start of EGFR-TKIs and the start of primary tumor radiotherapy: R0 - 30(<30 days), R30 - PD(≥ 30 days and disease stable), and RPD(radiotherapy after disease progression). The Kaplan-Meier method and log-rank test were used for survival analyses. Exploratory landmark analyses were investigated. RESULTS: The OS rates at 1, 2, 3, 5 years for the R group and D group were 96.8%, 62.9%, 38.3%, 17.1%, and 95.6%, 37.7%, 21.8%, 2.9%, respectively; the corresponding MST was 29 months(95% CI: 24.3-33.7) for the R group and 22 months(95% CI: 20.4-23.6) for the D group (χ2 = 13.480, p<0.001). Multivariate analysis revealed that primary tumor radiotherapy was independent predictors of prolonged OS.Among the four groups, The R30 - PD appeared to have the best OS (D, χ2 = 19.307, p<0.001;R0 - 30, χ2 = 11.687, p = 0.01; RPD, χ2 = 4.086, p = 0.043). Landmark analyses(22 months) showed the R30 - PD group had a significant long-term OS.The incidence of radiation pneumonitis ≥ grade 2 was17.3%(n = 19)and radiation esophagitis ≥ grade 2 was observed in 32 patients(29.1%). CONCLUSIONS: Our results showed that primary tumour radiotherapy may prolong long-term OS with acceptable toxicities. Appropriate delay(R30 - PD)of primary tumour radiotherapy may be the best choice.Premature radiotherapy(R0 - 30) and radiotherapy after disease progression (RPD)may not be reasonable for long-term OS.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Masculino , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Receptores ErbB/antagonistas & inibidores , Idoso , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso de 80 Anos ou mais , Estimativa de Kaplan-Meier , Estudos Retrospectivos , Taxa de Sobrevida , Tempo para o Tratamento
6.
PLoS One ; 19(8): e0306632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39173044

RESUMO

The traditional Chinese medicine (TCM) bupleurum-ginger-licorice formula presents significant anti-cancer effects, but its active ingredients and inhibitory mechanism remain unclear. In this work, the core effective ingredient quercetin and its signal transducer and activator of transcription 3 (Stat3) receptor both were identified by network pharmacology. Quercetin is a low-toxicity, non-carcinogenic flavonoid with antioxidant, anti-inflammatory and anticancer activities, which is widely distributed in edible plants. Stat3 can bind to specific DNA response elements and serves as a transcription factor to promote the translation of some invasion/migration-related target genes, considered as a potential anticancer target. Here, molecular docking and molecular dynamics (MD) simulation both were used to explore molecular recognition of quercetin with Stat3. The results show that quercetin impairs DNA transcription efficiency by hindering Stat3 dimerization, partially destroying DNA conformation. Specifically, when the ligand occupies the SH2 cavity of the enzyme, spatial rejection is not conductive to phosphokinase binding. It indirectly prevents the phosphorylation of Y705 and the formation of Stat3 dimer. When the inhibitor binds to the DT1005 position, it obviously shortens the distance between DNA and DBD, enhances their binding capacity, and thereby reduces the degree of freedom required for transcription. This work not only provides the binding modes between Stat3 and quercetin, but also contributes to the optimization and design of such anti-cancer inhibitors.


Assuntos
Desenho de Fármacos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Quercetina , Fator de Transcrição STAT3 , Quercetina/farmacologia , Quercetina/química , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Medicina Tradicional Chinesa , Farmacologia em Rede
7.
Food Chem ; 456: 140007, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38861864

RESUMO

Developing an efficient method for screening Ochratoxin A (OTA) in agriculture products is vital to ensure food safety and human health. However, the complex food matrix seriously affects the sensitivity and accuracy. To address this issue, we designed a novel molecularly imprinted polymer (MIP) electrochemical sensor based on multiwalled carbon nanotube-modified niobium carbide (Nb2C-MWCNTs) with the aid of the density functional theory (DFT). In this design, a glassy carbon electrode (GCE) was first modified by Nb2C-MWCNTs heterostructure. Afterward, the MIP layer was prepared, with ortho-toluidine as a functional monomer selected via DFT and OTA acting as a template on the surface of Nb2C-MWCNTs/GCE using in-situ electropolymerization. Electrochemical tests and physical characterization revealed that Nb2C-MWCNTs improved the sensor's active surface area and electron transmission capacity. Nb2C-MWCNTs had a good synergistic effect on MIP, endowing the sensor with high sensitivity and specific recognition of OTA in complex food matrix systems. The MIP sensor showed a wide linear range from 0.04 to 10.0 µM with a limit of detection (LOD) of 3.6 nM. Moreover, it presented good repeatability and stability for its highly antifouling effect on OTA. In real sample analysis, the recoveries, ranging from 89.77% to 103.70%, agreed well with the results obtained by HPLC methods, suggesting the sensor has good accuracy and high potential in practical applications.


Assuntos
Técnicas Eletroquímicas , Contaminação de Alimentos , Limite de Detecção , Impressão Molecular , Polímeros Molecularmente Impressos , Nanotubos de Carbono , Ocratoxinas , Ocratoxinas/análise , Ocratoxinas/química , Nanotubos de Carbono/química , Técnicas Eletroquímicas/instrumentação , Contaminação de Alimentos/análise , Polímeros Molecularmente Impressos/química , Eletrodos
8.
J Enzyme Inhib Med Chem ; 39(1): 2353711, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38887057

RESUMO

The PD-1/PD-L1 pathway is considered as one of the most promising immune checkpoints in tumour immunotherapy. However, researchers are faced with the inherent limitations of antibodies, driving them to pursue PD-L1 small molecule inhibitors. Virtual screening followed by experimental validation is a proven approach to discover active compounds. In this study, we employed multistage virtual screening methods to screen multiple compound databases to predict new PD-1/PD-L1 ligands. 35 compounds were proposed by combined analysis of fitness scores, interaction pattern and MM-GBSA binding affinities. Enzymatic assay confirmed that 10 out of 35 ligands were potential PD-L1 inhibitors, with inhibitory rate higher than 50% at the concentration of 30 µM. Among them, ZDS20 was identified as the most effective inhibitor with low micromolar activity (IC50 = 3.27 µM). Altogether, ZDS20 carrying novel scaffold was identified and could serve as a lead for the development of new classes of PD-L1 inhibitors.


Assuntos
Antígeno B7-H1 , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Receptor de Morte Celular Programada 1 , Bibliotecas de Moléculas Pequenas , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Humanos , Relação Estrutura-Atividade , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Estrutura Molecular , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/síntese química , Inibidores de Checkpoint Imunológico/química , Ligantes
9.
Inflammation ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773023

RESUMO

Cancer therapy has entered a new era with the use of programmed cell death protein 1 (PD-1) immune checkpoint inhibitors. When combined with thoracic radiotherapy, it demonstrates synergistic anti-tumor effects and potentially worsens radiation-induced myocardial fibrosis (RIMF). RIMF is the final stage of radiation-induced heart disease (RIHD) and a potentially fatal clinical complication of chest radiotherapy. It is characterized by decreased ventricular elasticity and distensibility, which can result in decreased ejection fraction, heart failure, and even sudden cardiac death. Pyroptosis, a type of programmed cell death, is mediated by members of the gasdermin (GSDM) family and has been associated with numerous cardiac disorders. The effect of pyroptosis on myocardial fibrosis caused by a combination of radiotherapy and PD-1 inhibitors remains uncertain. In this study, a 6MV X-ray of 20 Gy for local heart irradiation was used in the RIHD mouse model. We noticed that PD-1 inhibitors aggravated radiation-induced cardiac dysfunction and RIMF, concurrently enhancing the presence of CD8+ T lymphocytes in the cardiac tissue. Additionally, our findings indicated that the combination of PD-1 inhibitor and thoracic radiation can stimulate caspase-1 to cleave GSDMD, thereby regulating pyroptosis and liberating interleukin-8 (IL-18). In the myocardium of mice, the manifestation of pyroptosis mediated by GSDMD is accompanied by the buildup of proteins associated with fibrosis, such as collagen I, transforming growth factor ß1 (TGF-ß1), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor α (TNF-α). Moreover, it was discovered that TFG-ß1 induced the phosphorylation of Smad2/Smad3 when the cardiac underwent PD-1 inhibitor in conjunction with thoracic irradiation (IR). The findings of this research indicate that PD-1 inhibitor worsen RIMF in mice by triggering GSDMD-induced pyroptosis and influencing the TGF-ß1/Smads pathway. While using the caspase-1 inhibitor Z-YVAD-FMK, RIMF can be alleviated. Blocking GSDMD may be a viable strategy for managing myocardial fibrosis caused by the combination of PD-1 inhibitors and radiotherapy.

10.
Medicine (Baltimore) ; 103(10): e37248, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457543

RESUMO

INTRODUCTION: In rare occasions, coxsackievirus infections can cause serious illness, such as encephalitis and myocarditis. The immunotherapies of cancer could increase the risk of myocarditis, especially when applying immune checkpoint inhibitors. Herein, we report a rare case of Coxsackie B virus-induced myocarditis in a patient with a history of lymphoma. CASE PRESENTATION: A 32-year-old woman was admitted to the hospital with recurrent fever for more than 20 days, and she had a history of lymphoma. Before admission, the positron emission tomography/computed tomography result indicated that the patient had no tumor progression, and she was not considered the cancer-related fever upon arriving at our hospital. Patient's red blood cell, platelet count, and blood pressure were decreased. In addition, she had sinus bradycardia and 3 branch blocks, which was consistent with acute high lateral and anterior wall myocardial infarction. During hospitalization, the patient had recurrent arrhythmia, repeated sweating, poor mentation, dyspnea, and Coxsackie B virus were detected in patient's blood samples by pathogen-targeted next-generation sequencing. The creatine kinase, creatine kinase MB, and N-terminal pro-brain natriuretic peptide were persistently elevated. Consequently, the patient was diagnosed with viral myocarditis induced by Coxsackie B virus, and treated with acyclovir, gamma globulin combined with methylprednisolone shock therapy, trimetazidine, levosimendan, sildenan, continuous pump pressors with m-hydroxylamine, entecavir, adefovir, glutathione, pantoprazole, and low-molecular-weight heparin. Her symptoms worsened and died. CONCLUSION: We reported a case with a history of lymphoma presented with fever, myocardial injury, who was ultimately diagnosed with Coxsackie B virus-induced myocarditis. Moreover, pathogen-targeted next-generation sequencing indeed exhibited higher sensitivity compared to mNGS in detecting Coxsackie B virus.


Assuntos
Infecções por Coxsackievirus , Linfoma , Miocardite , Viroses , Humanos , Feminino , Adulto , Miocardite/diagnóstico , Miocardite/etiologia , Enterovirus Humano B , Infecções por Coxsackievirus/complicações , Infecções por Coxsackievirus/diagnóstico , Febre
11.
Environ Res ; 248: 118338, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38316390

RESUMO

The study investigated the influences of pure H2 and O2 introduction, simulating gases produced from the electrokinetic-enhanced bioremediation (EK-Bio), on TCE degradation, and the dynamic changes of the indigenous microbial communities. The dissolved hydrogen (DH) and oxygen (DO) concentrations ranged from 0.2 to 0.7 mg/L and 2.6 to 6.6 mg/L, respectively. The biological analysis was conducted by 16S rRNA sequencing and functional gene analyses. The results showed that the H2 introduction enhanced TCE degradation, causing a 90.4% TCE removal in the first 4 weeks, and 131.1 µM was reduced eventually. Accordingly, cis-dichloroethylene (cis-DCE) was produced as the only product. The following three ways should be responsible for this promoted TCE degradation. Firstly, the high DH rapidly reduced the oxidation-reduction potential (ORP) value to around -500 mV, beneficial to TCE microbial dechlorination. Secondly, the high DH significantly changed the community and promoted the enrichment of TCE anaerobic dechlorinators, such as Sulfuricurvum, Sulfurospirillum, Shewanella, Geobacter, and Desulfitobacterium, and increased the abundance of dechlorination gene pceA. Thirdly, the high DH promoted preferential TCE dechlorination and subsequent sulfate reduction. However, TCE bio-remediation did not occur in a high DO environment due to the reduced aerobic function or lack of functional bacteria or co-metabolic substrate. The competitive dissolved organic carbon (DOC) consumption and unfriendly microbe-microbe interactions also interpreted the non-degradation of TCE in the high DO environment. These results provided evidence for the mechanism of EK-Bio. Providing anaerobic obligate dechlorinators, and aerobic metabolic bacteria around the electrochemical cathodes and anodes, respectively, or co-metabolic substrates to the anode can be feasible methods to promote remediation of TCE-contaminated shallow aquifer under EK-Bio technology.


Assuntos
Tricloroetileno , Biodegradação Ambiental , Tricloroetileno/análise , Tricloroetileno/metabolismo , RNA Ribossômico 16S , Bactérias/metabolismo , Hidrogênio/análise , Hidrogênio/metabolismo , Oxigênio/análise , Oxigênio/metabolismo
12.
Phys Chem Chem Phys ; 26(12): 9155-9169, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38165855

RESUMO

Src homology 2-domain-containing tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase that is widely expressed in a variety of cells and regulates the immune response of T cells through the PD-1 pathway. However, the activation mechanism and allosteric effects of SHP2 remain unclear, hindering the development of small molecule inhibitors. For the first time, in this study, the complex structure formed by the intact PD-1 tail and SHP2 was modeled. The molecular recognition and conformational changes of inactive/active SHP2 versus ITIM/ITSM were compared based on prolonged MD simulations. The relative flexibility of the two SH2 domains during MD simulations contributes to the recruitment of ITIM/ITSM and supports the subsequent conformational change of SHP2. The binding free energy calculation shows that inactive SHP2 has a higher affinity for ITIM/ITSM than active SHP2, mainly because the former's N-SH2 refers to the α-state. In addition, a significant decrease in the contribution to the binding energy of certain residues (e.g., R32, S34, K35, T42, and K55) of conformationally transformed SHP2 contributes to the above result. These detailed changes during conformational transition will provide theoretical guidance for the molecular design of subsequent novel anticancer drugs.


Assuntos
Receptor de Morte Celular Programada 1 , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Domínios de Homologia de src
13.
J Mol Model ; 30(2): 39, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224406

RESUMO

CONTEXT: Mycobacterial membrane proteins Large 3 (MmpL3) is responsible for the transport of mycobacterial acids out of cell membrane to form cell wall, which is essential for the survival of Mycobacterium tuberculosis (Mtb) and has become a potent anti-tuberculosis target. SQ109 is an ethambutol (EMB) analogue, as a novel anti-tuberculosis drug, can effectively inhibit MmpL3, and has completed phase 2b-3 clinical trials. Drug resistance has always been the bottleneck problem in clinical treatment of tuberculosis. The S288T mutant of MmpL3 shows significant resistance to the inhibitor SQ109, while the specific action mechanism remains unclear. The results show that MmpL3 S288T mutation causes local conformational change with little effect on the global structure. With MmpL3 bound by SQ109 inhibitor, the distance between D710 and R715 increases resulting in H-bond destruction, but their interactions and proton transfer function are still restored. In addition, the rotation of Y44 in the S288T mutant leads to an obvious bend in the periplasmic domain channel and an increased number of contact residues, reducing substrate transport efficiency. This work not only provides a possible dual drug resistance mechanism of MmpL3 S288T mutant but also aids the development of novel anti-tuberculosis inhibitors. METHODS: In this work, molecular dynamics (MD) and quantum mechanics (QM) simulations both were performed to compare inhibitor (i.e., SQ109) recognition, motion characteristics, and H-bond energy change of MmpL3 after S288T mutation. In addition, the WT_SQ109 complex structure was obtained by molecular docking program (Autodock 4.2); Molecular Mechanics/ Poisson Boltzmann Surface Area (MM-PBSA) and Solvated Interaction Energy (SIE) methods were used to calculate the binding free energies (∆Gbind); Geometric criteria were used to analyze the changes of hydrogen bond networks.


Assuntos
Adamantano/análogos & derivados , Etilenodiaminas , Mycobacterium tuberculosis , Prótons , Simulação de Acoplamento Molecular , Canais Iônicos , Membrana Celular , Mycobacterium tuberculosis/genética
14.
Phys Chem Chem Phys ; 25(35): 23588-23601, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37621251

RESUMO

As a ubiquitous protein tyrosine phosphatase, SHP2 is involved in PD-1/PD-L1 mediated tumor immune escape and undergoes substantial conformational changes. Therefore, it is considered an ideal target for tumor intervention. However, the allosteric mechanisms of SHP2 binding PD-1 intracellular ITIM/ITSM phosphopeptides remain unclear, which greatly hinders the development of novel structure-based anticancer allosteric inhibitors. In this work, the open and closed structural models of SHP2 are first constructed based on this knowledge; next their motion modes are investigated via elastic network models such as the Gaussian network model (GNM), anisotropic network model (ANM) and adaptive anisotropic network model (aANM); and finally, a possible allosteric signaling pathway is proposed using a neural relational inference molecular dynamics (NRI-MD) simulation embedded with an artificial intelligence (AI) strategy. In GNM and ANM, the N-SH2, C-SH2 and PTP domains all exhibit distinct dynamics partitions, and the N-SH2/C-SH2 regions show a rigid rotation relative to PTP. According to a series of intermediate snapshots given by aANM, N-SH2 is first identified with pY223 specifically, inducing a D'E-loop to change from ß-sheets to random coils, and then, C-SH2 serves as a fulcrum to drive N-SH2 to rotate 110° completely away from the original active sites of PTP. Finally, a possible allosteric signaling-transfer path for SHP2, namely R220-R138-T108-R32, is proposed based on NRI-MD sampling. This work provides a possible allosteric mechanism of SHP2, which is helpful for the following design of novel allosteric inhibitors and is expected to be used in clinical synergies with PD-1 monoclonal antibody.


Assuntos
Inteligência Artificial , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Regulação Alostérica , Receptor de Morte Celular Programada 1 , Proteína Tirosina Fosfatase não Receptora Tipo 11/química
15.
Environ Technol ; : 1-13, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37323025

RESUMO

Microbial communities are fundamental components driving critical biogeochemical carbon (C), nitrogen (N) and sulfur (S) cycles in groundwater ecosystems. The reduction-oxidation (redox) potential is one important environmental factor influencing the microbial community composition. Here, we developed a bio-trap method using in-situ sediment as a matrix to collect aquifer sediment samples and evaluate the response of microbial composition and C/N/S cycling functions to redox variations created by providing sole O2, joint O2 and H2, and sole H2 to three wells. Illumina sequencing analyses showed that the microbial communities in the bio-trap sediment could respond quickly to redox changes in the wells, demonstrating that this bio-trap method is promising for detecting microbial variation in the aquifer sediment. The microbial metabolic functions related to C, N and S cyclings and organic pollutants degradation were predicted by the Kyoto Encyclopedia of Genes and Genomes (KEGG) approach. It was found that the joint O2 and H2 injection produced medium oxidation-reduction potential (ORP -346 and -614 mV) and enhanced more microbial functions than sole O2 or H2, which mainly include oxidative phosphorylation, most carbon source metabolism, various pollutants degradation, and nitrogen and sulfur metabolism. Moreover, the functional genes encoding phenol monooxygenase, dioxygenase, nitrogen fixation, nitrification, aerobic and anaerobic nitrate reductase, nitrite reductase, nitric oxide reductase, and sulfur oxidation increased. These findings tell us the contaminant bioremediation and N, S metabolism can be promoted by adjusting ORP realised by injecting joint O2 and H2.

16.
Bio Protoc ; 13(11): e4693, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37342158

RESUMO

Exosomes are lipid bilayer-enclosed vesicles, actively secreted by cells, containing proteins, lipids, nucleic acids, and other substances with multiple biological functions after entering target cells. Exosomes derived from NK cells have been shown to have certain anti-tumor effects and potential applications as chemotherapy drug carriers. These developments have resulted in high demand for exosomes. Although there has been large-scale industrial preparation of exosomes, they are only for generally engineered cells such as HEK 293T. The large-scale preparation of specific cellular exosomes is still a major problem in laboratory studies. Therefore, in this study, we used tangential flow filtration (TFF) to concentrate the culture supernatants isolated from NK cells and isolated NK cell-derived exosomes (NK-Exo) by ultracentrifugation. Through a series of characterization and functional verification of NK-Exo, the characterization, phenotype, and anti-tumor activity of NK-Exo were verified. Our study provides a considerably time- and labor-saving protocol for the isolation of NK-Exo.

17.
J Hematol Oncol ; 16(1): 50, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158938

RESUMO

BACKGROUND: QL1706 (PSB205) is a single bifunctional MabPair (a novel technical platform) product consisting of two engineered monoclonal antibodies (anti-PD-1 IgG4 and anti-CTLA-4 IgG1), with a shorter elimination half-life (t1/2) for CTLA-4. We report results from a phase I/Ib study of QL1706 in patients with advanced solid tumors who failed standard therapies. METHODS: In the phase I study, QL1706 was administered intravenously once every 3 weeks at one of five doses ranging from 0.3 to 10 mg/kg, and the maximum tolerated dose, recommended phase 2 dose (RP2D), safety, pharmacokinetics (PK), and pharmacodynamics (PD) of QL1706 were investigated. In the phase Ib study, QL1706 was administered at the RP2D intravenously every 3 weeks, and the preliminary efficacies in non-small cell lung cancer (NSCLC), nasopharyngeal carcinoma (NPC), cervical cancer (CC), and other solid tumors were evaluated. RESULTS: Between March 2020 and July 2021, 518 patients with advanced solid tumors were enrolled (phase I, n = 99; phase Ib, n = 419). For all patients, the three most common treatment-related adverse events (TRAEs) were rash (19.7%), hypothyroidism (13.5%), and pruritus (13.3%). The TRAEs and immune-related adverse events (irAEs) of grade ≥ 3 occurred in 16.0% and 8.1% of patients, respectively. In phase I, 2 of 6 patients in the 10mg/kg group experienced dose-limiting toxicities (DLTs) (grade 3 thrombocytopenia and grade 4 immune-mediated nephritis), so the maximum tolerated dose (MTD) was reached at 10 mg/kg. The RP2D was determined to be 5 mg/kg based on comprehensive analysis of tolerability, PK/PD, and efficacy. For all patients who received QL1706 at the RP2D, the objective response rate (ORR) and median duration of response were 16.9% (79/468) and 11.7 months (8.3-not reached [NR]), respectively; and the ORRs were 14.0% (17/121) in NSCLC, 24.5% (27/110) in NPC, 27.3% (15/55) in CC, 7.4% (2/27) in colorectal cancer, 23.1% (6/26) in small cell lung cancer. For immunotherapy-naive patients, QL1706 exhibited promising antitumor activities, especially in NSCLC, NPC, and CC, with ORRs of 24.2%, 38.7%, and 28.3%, respectively. CONCLUSIONS: QL1706 was well tolerated and demonstrated promising antitumor activity in solid tumors, especially in NSCLC, NPC, and CC patients. It is currently being evaluated in randomized phase II (NCT05576272, NCT05179317) and phase III (NCT05446883, NCT05487391) trials. Trial Registration ClinicalTrials.gov Identifier: NCT04296994 and NCT05171790.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Antígeno CTLA-4 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Nasofaríngeo , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Antígeno CTLA-4/antagonistas & inibidores , Imunoglobulina G , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Carcinoma Nasofaríngeo/tratamento farmacológico
18.
Sci Total Environ ; 879: 163026, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965730

RESUMO

The sole H2 and O2 usually promote chlorinated hydrocarbons (CHCs) biotransformation by several mechanisms, including reductive dechlorination and aerobic oxidation. However, the mechanism of the CHCs transformation in joint H2 and O2 system (H2/O2 system) is still unclear. In this study, the degradation kinetics of trichloroethene (TCE) were investigated and DNA stable isotope probing (DNA-SIP) were used to explore the synergistic mechanism of functional microorganisms on TCE degradation under the condition of H2/O2 coexistence. In the H2/O2 microcosm, TCE was significantly removed by 13.00 µM within 40 days, much higher than N2, H2 and O2 microcosms, and 1,1-DCE was detected as an intermediate. DNA-SIP technology identified three anaerobic TCE metabolizers, five aerobic TCE metabolizers, nine hydrogen-oxidizing bacteria (HOB), some TCE metabolizers utilizing limited O2, and some anaerobic dechlorinating bacteria reductively using H2 to dechlorinate TCE. It is also confirmed for the first time that 3 OUTs belonging to Methyloversatilis and SH-PL14 can simultaneously utilize H2 and O2 as energy sources to grow and metabolize TCE or 1,1-DCE. HOB may provide carbon sources or electron acceptors or donors for TCE biotransformation. These findings confirm the coexistence of anaerobic and aerobic TCE metabolizers and degraders, which synergistically promoted the conversion of TCE in the joint H2/O2 system. Our results provide more information about the functional microbe resources and synergetic mechanisms for TCE degradation.


Assuntos
Hidrocarbonetos Clorados , Tricloroetileno , Tricloroetileno/metabolismo , Hidrocarbonetos Clorados/metabolismo , Biotransformação , Oxirredução , Bactérias Anaeróbias/metabolismo , Bactérias/metabolismo , DNA , Biodegradação Ambiental
19.
Anticancer Drugs ; 34(10): 1183-1189, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36727741

RESUMO

The purpose is to compare the clinical efficacy and toxicity of etoposide plus lobaplatin (EL) or etoposide plus cisplatin (EP) with concurrent thoracic radiotherapy during the treatment of limited-stage small cell lung cancer (LS-SCLC). Forty-two patients with LS-SCLC were randomly divided into EL ( n = 19) or EP ( n = 23) regimens combined with thoracic intensity-modulated radiotherapy. The primary endpoint was 1-year progression-free survival (PFS) rate. The 1-, 2-, and 3-year PFS rates in the EL and EP cohorts were 50.8, 38.1, and 12.7%; and 56.5, 43.5, and 29.0%, respectively ( P = 0.527), whereas the 1-, 2-, and 3-year overall survival (OS) rates were 72.2, 52.5, and 43.8%; and 73.9, 48.4, and 48.4%, respectively ( P = 0.923). The hematological toxicities were similar in two cohorts. However, gastrointestinal reactions were more severe in the EP group. The incidence of nausea and vomiting in EL and EP cohorts were 31.6% vs. 73.9% ( P = 0.006) and 20.1% vs. 60.9% ( P = 0.009), respectively. The two cohorts did not show ≥grade 4 radiation esophagitis and ≥grade 3 radiation pneumonitis. The incidence of acute radiation esophagitis in EL group was lower ( P = 0.038), both groups showed a similar incidence of radiation pneumonitis ( P = 1.000). EL or EP chemotherapy with concurrent thoracic radiotherapy showed similar PFS and OS. The EL group showed milder gastrointestinal toxicity and radiation esophagitis. Radiation pneumonitis and hematological toxicity were similar in the two regimens, which can be tolerated by patients.


Assuntos
Esofagite , Neoplasias Pulmonares , Pneumonite por Radiação , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/radioterapia , Cisplatino , Etoposídeo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Pneumonite por Radiação/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Esofagite/tratamento farmacológico
20.
Environ Sci Pollut Res Int ; 30(15): 43886-43900, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36670226

RESUMO

Due to the high-acidic arsenic-containing wastewater pollution greatly threatening human health and ecological safety, a simple and efficient method for reducing arsenic was proposed in this paper to solve this problem. By using potassium borohydride (KBH4) as a reducing agent, the soluble arsenic was converted into the gaseous arsine (AsH3) or solid arsenic (As0) to achieve the purpose of removing arsenic in wastewater. By exploring the reaction kinetics of the arsenic removal process, it was found that the fast reaction stage (0-2 min) conformed to pseudo-first-order kinetics. The removal rate of arsenic increased to over 73% in 0.5 min, and reaction equilibrium was reached after 30 min. Various influence factors including arsenic valence, aeration, addition method, concentrations of reducing agent, and hydrogen ion (H+) were investigated. The results showed that As(III) was easier to be removed by reduction than As(V), while adding KBH4 in multiples and aeration were both favorable to the removal of arsenic. Increased concentration of KBH4 also enhanced the removal of arsenic. Appropriate H+ concentration contributed to the arsenic removal, but excessive H+ concentration conversely has an inhibitory effect. The maximum removal rate of arsenic was 95.87%, with the maximum removal capacity of 45.50 mg/g. Based on the XRD and SEM-EDS analysis of residue, amorphous arsenic (As0) with a mass ratio of more than 94.52% was generated after the reduction of soluble arsenic. Our study demonstrated that the reaction mechanism of reductive degradation is soluble arsenic with hydrogen radicals (H•) to form arsenic (As0) and arsine (AsH3) (in the molar ratio of 6:1). Although the generated solid arsenic (As0) is convenient for the soluble arsenic removal from wastewater, attention must be paid to the formation of AsH3, and strategies for AsH3 treatment should be considered.


Assuntos
Arsênio , Arsenicais , Poluentes Químicos da Água , Humanos , Arsênio/análise , Águas Residuárias , Substâncias Redutoras , Concentração de Íons de Hidrogênio , Prótons , Poluentes Químicos da Água/análise , Adsorção , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA