Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299724

RESUMO

Currently, deep learning aided medical imaging is becoming the hot spot of AI frontier application and the future development trend of precision neuroscience. This review aimed to render comprehensive and informative insights into the recent progress of deep learning and its applications in medical imaging for brain monitoring and regulation. The article starts by providing an overview of the current methods for brain imaging, highlighting their limitations and introducing the potential benefits of using deep learning techniques to overcome these limitations. Then, we further delve into the details of deep learning, explaining the basic concepts and providing examples of how it can be used in medical imaging. One of the key strengths is its thorough discussion of the different types of deep learning models that can be used in medical imaging including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial network (GAN) assisted magnetic resonance imaging (MRI), positron emission tomography (PET)/computed tomography (CT), electroencephalography (EEG)/magnetoencephalography (MEG), optical imaging, and other imaging modalities. Overall, our review on deep learning aided medical imaging for brain monitoring and regulation provides a referrable glance for the intersection of deep learning aided neuroimaging and brain regulation.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Neuroimagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos
2.
J Food Sci ; 86(6): 2387-2397, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34018189

RESUMO

Gelation properties of myofibrillar protein (MP)/wheat gluten (WG) induced by glutamine transaminase (TGase) were studied. Results showed that the inclusion of transglutaminase increased the gel strength, water-holding capacity (WHC), and nonfreezable water (Wnf) of MP/WG mixture. Circular dichroism (CD) analysis showed that the ß-sheet and random coil content of the MP/WG treated with TGase addition increased by 12.1% and 3.7%, while the α-helix and ß-turn content decreased by 14.2% and 1.8%. Rheological measurements showed that TGase induced higher energy storage modulus value during the MP/WG gel heating-cooling cycle. the hydrogen bond and hydrophobic interaction content of the MP/WG gels increased by 80 and 120 ug/L, and the disulfide bond decreased by 200 ug/L, with TGase addition was increased from 0 to 120 U/g protein. Scanning electron microscope (SEM) showed that MP/WG gel with TGase had uniform and dense network structure. PRACTICAL APPLICATION: The properties of myofibrillar/wheat gluten gel induced by TGase crosslinking was studied. The gel structure and water holding capacity of MP/WG were improved by the cross-linking of TGase. The study of the gel properties of MP/WG induced by TGase crosslinking also can provide a theoretical basis for analyzing the effect of TGase on the application of gluten protein in complex meat emulsion system.


Assuntos
Géis/química , Glutens/química , Miofibrilas/metabolismo , Reologia , Transglutaminases/farmacologia , Triticum/química , Glutens/efeitos dos fármacos , Glutens/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Miofibrilas/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA