Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-36891288

RESUMO

Durable serological memory following vaccination is critically dependent on the production and survival of long-lived plasma cells (LLPCs). Yet, the factors that control LLPC specification and survival remain poorly resolved. Using intra-vital two-photon imaging, we find that in contrast to most plasma cells in the bone marrow, LLPCs are uniquely sessile and organized into clusters that are dependent on April, an important survival factor. Using deep, bulk RNA sequencing, and surface protein flow-based phenotyping, we find that LLPCs express a unique transcriptome and proteome compared to bulk PCs, fine tuning expression of key cell surface molecules, CD93, CD81, CXCR4, CD326, CD44 and CD48, important for adhesion and homing, and phenotypically label LLPCs within mature PC pool. Conditional deletion of Cxcr4 in PCs following immunization leads to rapid mobilization from the BM, reduced survival of antigen-specific PCs, and ultimately accelerated decay of antibody titer. In naive mice, the endogenous LLPCs BCR repertoire exhibits reduced diversity, reduced somatic mutations, and increased public clones and IgM isotypes, particularly in young mice, suggesting LLPC specification is non-random. As mice age, the BM PC compartment becomes enriched in LLPCs, which may outcompete and limit entry of new PC into the LLPC niche and pool.

2.
Cell Rep ; 42(3): 112171, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36867536

RESUMO

Macrophages facilitate critical functions in regulating pathogen clearance and immune homeostasis in tissues. The remarkable functional diversity exhibited by macrophage subsets is dependent on tissue environment and the nature of the pathological insult. Our current knowledge of the mechanisms that regulate the multifaceted counter-inflammatory responses mediated by macrophages remains incomplete. Here, we report that CD169+ macrophage subsets are necessary for protection under excessive inflammatory conditions. We show that in the absence of these macrophages, even under mild septic conditions, mice fail to survive and exhibit increased production of inflammatory cytokines. Mechanistically, CD169+ macrophages control inflammatory responses via interleukin-10 (IL-10), as CD169+ macrophage-specific deletion of IL-10 was lethal during septic conditions, and recombinant IL-10 treatment reduced lipopolysaccharide (LPS)-induced lethality in mice lacking CD169+ macrophages. Collectively, our findings show a pivotal homeostatic role for CD169+ macrophages and suggest they may serve as an important target for therapy under damaging inflammatory conditions.


Assuntos
Interleucina-10 , Sepse , Animais , Camundongos , Citocinas , Lipopolissacarídeos/farmacologia , Macrófagos
3.
J Immunol ; 210(5): 595-608, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645344

RESUMO

Both infection and autoimmune disease can disrupt pre-existing Ab titers leading to diminished serological memory, yet the underlying mechanisms are not well understood. In this article, we report that TNF-α, an inflammatory cytokine, is a master regulator of the plasma cell (PC) niche in the bone marrow (BM). Acute rTNF-α treatment depletes previously existing Ab titers after vaccination by limiting PC occupancy or retention in the BM. Consistent with this phenomenon, mice lacking TNF-α signaling have elevated PC capacity in the BM and higher Ab titers. Using BM chimeric mice, we found that PC egress from the BM is regulated in a cell-extrinsic manner, by radiation-resistant cells via TNF-α receptor 1 signaling, leading to increased vascular permeability and CD138 downregulation on PCs. PC motility and egress in the BM are triggered within 6 h of recombinant TNF-α treatment. In addition to promoting egress, TNF-α signaling also prevented re-engraftment into the BM, leading to reduced PC survival. Although other inflammatory stimuli can promote PC egress, TNF-α signaling is necessary for limiting the PC capacity in the BM. Collectively, these data characterize how TNF-α-mediated inflammation attenuates the durability of serological memory and shapes the overall size and composition of the Ab-secreting cell pool in the BM.


Assuntos
Medula Óssea , Fator de Necrose Tumoral alfa , Camundongos , Animais , Plasmócitos , Transdução de Sinais , Células da Medula Óssea , Fatores Imunológicos
4.
Rev. Inst. Méd. Sucre ; 69(124): 74-77, ene.-jun. 2004. ilus
Artigo em Espanhol | LILACS | ID: lil-396554

RESUMO

Presentamos una revisión de los casos de enclavado endomedular que derivaron en complicaciones distintas, con las repercusiones inherentes a cada caso, durante un periodo de 36 meses que se realizan los enclavados endomedulares en el Hospital Obrero No.4.


Assuntos
Humanos , Masculino , Feminino , Fixação Intramedular de Fraturas , Ortopedia , Traumatologia , Bolívia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA