Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 80(8): 257, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358656

RESUMO

The crater lake at "El Chichón" volcano is an extreme acid-thermal environment with high concentrations of heavy metals. In this study, two bacterial strains with the ability to resist high concentrations of arsenic (As) were isolated from water samples from the crater lake. Staphylococcus ARSC1-P and Stenotrophomonas ARSC2-V isolates were identified by use of the 16S rDNA gene. Staphylococcus ARSC1-P was able to grow in 400 mM of arsenate [As(V)] under oxic and anoxic conditions. The IC50 values were 36 and 382 mM for oxic and anoxic conditions, respectively. For its part, Stenotrophomonas ARSC2-V showed IC50 values of 110 mM and 2.15 for As(V) and arsenite [As(III)], respectively. Arsenic accumulated intracellularly in both species [11-25 nmol As × mg cellular prot-1 in cells cultured in 50 mM As(V)]. The present study shows evidence of microbes that can potentially be a resource for the bio-treatment of arsenic in contaminated sites, which highlights the importance of the "El Chichón" volcano as a source of bacterial strains that are adaptable to extreme conditions.


Assuntos
Arsênio , Extremófilos , México , Lagos , Bactérias , RNA Ribossômico 16S/genética
2.
Environ Res ; 203: 111862, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34400165

RESUMO

El Chichón volcano is one of the most active volcanoes in Mexico. Previous studies have described its poly-extreme conditions and its bacterial composition, although the functional features of the complete microbiome have not been characterized yet. By using metabarcoding analysis, metagenomics, metabolomics and enzymology techniques, the microbiome of the crater lake was characterized in this study. New information is provided on the taxonomic and functional diversity of the representative Archaea phyla, Crenarchaeota and Euryarchaeota, as well as those that are representative of Bacteria, Thermotogales and Aquificae. With culture of microbial consortia and with the genetic information collected from the natural environment sampling, metabolic interactions were identified between prokaryotes, which can withstand multiple extreme conditions. The existence of a close relationship between the biogeochemical cycles of carbon and sulfur in an active volcano has been proposed, while the relationship in the energy metabolism of thermoacidophilic bacteria and archaea in this multi-extreme environment was biochemically revealed for the first time. These findings contribute towards understanding microbial metabolism under extreme conditions, and provide potential knowledge pertaining to "microbial dark matter", which can be applied to biotechnological processes and evolutionary studies.


Assuntos
Metagenômica , Microbiota , Archaea/genética , Lagos , Metagenoma , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA