Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891846

RESUMO

Tumor recurrence and drug resistance are responsible for poor prognosis in colorectal cancer (CRC). DNA mismatch repair (MMR) deficiency or elevated interleukin-8 (IL-8) levels are characteristics of CRCs, which have been independently correlated with treatment resistance to common therapies. We recently demonstrated significantly impaired therapeutical response and increased IL-8 release of CRC cell lines with reduced expression of MMR protein MLH1 as well as cytoskeletal non-erythrocytic spectrin alpha II (SPTAN1). In the present study, decreased intratumoral MLH1 and SPTAN1 expression in CRCs could be significantly correlated with enhanced serum IL-8. Furthermore, using stably reduced SPTAN1-expressing SW480, SW620 or HT-29 cell lines, the RAS-mediated RAF/MEK/ERK pathway was analyzed. Here, a close connection between low SPTAN1 expression, increased IL-8 secretion, enhanced extracellular-signal-regulated kinase (ERK) phosphorylation and a mesenchymal phenotype were detected. The inhibition of ERK by U0126 led to a significant reduction in IL-8 secretion, and the combination therapy of U0126 with FOLFOX optimizes the response of corresponding cancer cell lines. Therefore, we hypothesize that the combination therapy of FOLFOX and U0126 may have great potential to improve drug efficacy on this subgroup of CRCs, showing decreased MLH1 and SPTAN1 accompanied with high serum IL-8 in affected patients.


Assuntos
Butadienos , Neoplasias Colorretais , Fluoruracila , Interleucina-8 , Nitrilas , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Interleucina-8/metabolismo , Interleucina-8/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Butadienos/farmacologia , Nitrilas/farmacologia , Linhagem Celular Tumoral , Compostos Organoplatínicos/farmacologia , Compostos Organoplatínicos/uso terapêutico , Leucovorina/uso terapêutico , Leucovorina/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Feminino , Masculino , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HT29 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína 1 Homóloga a MutL/metabolismo , Proteína 1 Homóloga a MutL/genética , Pessoa de Meia-Idade , Idoso , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fosforilação/efeitos dos fármacos
2.
Pharmaceutics ; 15(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37111604

RESUMO

The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing regulator proteins. The high-affinity binding occurring between the proteins and the repetitions disallow MBNL proteins from performing their post-transcriptional splicing regulation leading to downstream molecular effects directly related to disease symptoms such as myotonia and muscle weakness. In this study, we build on previously demonstrated evidence showing that the silencing of miRNA-23b and miRNA-218 can increase MBNL1 protein in DM1 cells and mice. Here, we use blockmiR antisense technology in DM1 muscle cells, 3D mouse-derived muscle tissue, and in vivo mice to block the binding sites of these microRNAs in order to increase MBNL translation into protein without binding to microRNAs. The blockmiRs show therapeutic effects with the rescue of mis-splicing, MBNL subcellular localization, and highly specific transcriptomic expression. The blockmiRs are well tolerated in 3D mouse skeletal tissue inducing no immune response. In vivo, a candidate blockmiR also increases Mbnl1/2 protein and rescues grip strength, splicing, and histological phenotypes.

3.
Mol Ther Nucleic Acids ; 27: 1146-1155, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35282418

RESUMO

Myotonic dystrophy type 1 is a debilitating neuromuscular disease causing muscle weakness, myotonia, and cardiac dysfunction. The phenotypes are caused by muscleblind-like (MBNL) protein sequestration by toxic RNA in the DM1 protein kinase (DMPK) gene. DM1 patients exhibit a pathogenic number of repetitions in DMPK, which leads to downstream symptoms. Another disease characteristic is altered microRNA (miRNA) expression. It was previously shown that miR-23b regulates the translation of MBNL1 into protein. Antisense oligonucleotide (AON) treatment targeting this miRNA can improve disease symptoms. Here, we present a refinement of this strategy targeting a miR-23b binding site on the MBNL1 3' UTR in DM1 model cells and mice by using AONs called blockmiRs. BlockmiRs linked to novel cell-penetrating peptide chemistry showed an increase in MBNL1 protein in DM1 model cells and HSALR mice. They also showed an increase in muscle strength and significant rescue of downstream splicing and histological phenotypes in mice without disturbing the endogenous levels of other miR-23b target transcripts.

4.
Mol Ther Nucleic Acids ; 26: 174-191, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34513303

RESUMO

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by expansion of unstable CTG repeats in a non-coding region of the DMPK gene. CUG expansions in mutant DMPK transcripts sequester MBNL1 proteins in ribonuclear foci. Depletion of this protein is a primary contributor to disease symptoms such as muscle weakness and atrophy and myotonia, yet upregulation of endogenous MBNL1 levels may compensate for this sequestration. Having previously demonstrated that antisense oligonucleotides against miR-218 boost MBNL1 expression and rescue phenotypes in disease models, here we provide preclinical characterization of an antagomiR-218 molecule using the HSALR mouse model and patient-derived myotubes. In HSALR, antagomiR-218 reached 40-60 pM 2 weeks after injection, rescued molecular and functional phenotypes in a dose- and time-dependent manner, and showed a good toxicity profile after a single subcutaneous administration. In muscle tissue, antagomiR rescued the normal subcellular distribution of Mbnl1 and did not alter the proportion of myonuclei containing CUG foci. In patient-derived cells, antagomiR-218 improved defective fusion and differentiation and rescued up to 34% of the gene expression alterations found in the transcriptome of patient cells. Importantly, miR-218 was found to be upregulated in DM1 muscle biopsies, pinpointing this microRNA (miRNA) as a relevant therapeutic target.

5.
Drug Discov Today ; 23(12): 2013-2022, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30086404

RESUMO

Myotonic dystrophy 1 (DM1) is a multisystemic neuromuscular disease caused by a dominantly inherited 'CTG' repeat expansion in the gene encoding DM Protein Kinase (DMPK). The repeats are transcribed into mRNA, which forms hairpins and binds with high affinity to the Muscleblind-like (MBNL) family of proteins, sequestering them from their normal function. The loss of function of MBNL proteins causes numerous downstream effects, primarily the appearance of nuclear foci, mis-splicing, and ultimately myotonia and other clinical symptoms. Antisense and other RNA-mediated technologies have been applied to target toxic-repeat mRNA transcripts to restore MBNL protein function in DM1 models, such as cells and mice, and in humans. This technique has had promising results in DM1 therapeutics by alleviating pathogenic phenotypes.


Assuntos
Distrofia Miotônica/genética , Distrofia Miotônica/terapia , RNA/genética , Animais , Humanos , Miotonina Proteína Quinase/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA