RESUMO
Binary nanocrystal superlattices, that is, ordered structures of two sorts of nanocolloids, hold promise for a series of functional materials with novel collective properties. Here we show that based on electron tomography a comprehensive, quantitative, three-dimensional characterization of these systems down to the single nanocrystal level can be achieved, which is key in understanding the emerging materials properties. On four binary lattices composed of PbSe, CdSe, and Au nanocrystals, we illustrate that ambiguous interpretations based on two-dimensional transmission electron microscopy can be prevented, nanocrystal sizes and superlattice parameters accurately determined, individual crystallographic point and plane defects studied, and the order/disorder at the top and bottom surfaces imaged. Furthermore, our results suggest that superlattice nucleation and growth occurred at the suspension/air interface and that the unit cells of some lattices are anisotropically deformed upon drying.
Assuntos
Nanopartículas/química , Compostos de Cádmio/química , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Ouro/química , Chumbo/química , Compostos de Selênio/químicaRESUMO
We use scanning tunnelling microscopy (STM) to controllably contact individual CdSe quantum dots (QDs) in a multilayer array to study electrical contacts to a model QD solid. The probability of electron injection into the QD array depends strongly on the symmetry of the QD wave functions and their response to the local electric field. Quantitative spectroscopy of the QD energy levels is possible if the potential distribution in the STM tip-QD array-substrate system is taken into account.
RESUMO
Through the mechanism of "oriented attachment", small nanocrystals can fuse into a wide variety of one- and two-dimensional nanostructures. This fusion phenomenon is investigated in detail by low-temperature annealing of a two-dimensional array of 10 nm-sized PbSe nanocrystals, in situ in the transmission electron microscope. We have revealed a complex chain of processes; after coalescence, the connected nanocrystals undergo consecutive rotations in three-dimensional space, followed by drastic interfacial relaxations whereby full fusion is obtained.
Assuntos
Microscopia Eletrônica de Transmissão/métodos , Nanopartículas/ultraestrutura , Temperatura , Pontos QuânticosRESUMO
In this paper we show that self-organization of colloidal PbSe and CdSe semiconductor nanocrystals with a size ratio of 0.57 leads to binary structures with a AB2 or a cuboctahedral AB13 lattice. The type of superlattice formed can be regulated by the relative concentration of both nanocrystals in the suspension.
RESUMO
The electronic local density of states (LDOS) of single PbSe quantum dots (QDs) and QD molecules is explored using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Both individual PbSe QDs and molecular aggregates of PbSe QDs (dimers, trimers, etc.) are mechanically stabilized in a two-dimensional superlattice of wide band gap CdSe QDs acting as an inert matrix. The LDOS measured at individual QDs dispersed in the matrix is identical to that of single isolated QDs chemically linked to a substrate. We investigate the degree of quantum mechanical coupling between the PbSe QDs in molecular aggregates by comparing the LDOS measured at each site in the aggregates to that of an individual PbSe QD. We observe a variable broadening of the resonances indicating a spatially dependent degree of electron delocalization in the molecular aggregates.
Assuntos
Cristalização/métodos , Chumbo/química , Microscopia de Tunelamento/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Pontos Quânticos , Compostos de Selênio/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
The optoelectronic properties of semiconductor quantum-dot (QD) solids depend on the electronic structure of the building blocks and their interactions. Disorder may affect the coupling on a local scale. We have measured the density of states of 2D arrays of PbSe QDs site by site using scanning tunneling spectroscopy. It markedly differs from that of isolated QDs due to electronic coupling in the array. We observe strong local variations in the coupling strength with two prototypical cases: delocalization of the conduction electrons only, and full coupling with both hole and electron delocalization over the QD sites in the array.
RESUMO
Molecules, supramolecular structures and semiconductor nanocrystals are increasingly used as the active components in prototype opto-electrical devices with miniaturized dimensions and novel functions. Therefore, there is a strong need to measure the electronic structure of such single, individual nano-objects. Here, we explore the potential of scanning tunnelling spectroscopy to obtain quantitative information on the energy levels and Coulomb interactions of semiconductor quantum dots. We discuss the conditions under which shell-tunnelling, shell-filling and bipolar spectroscopy can be performed, and illustrate this with spectra acquired on individual CdSe and PbSe quantum dots. We conclude that quantitative information on the energy levels and Coulomb interactions can be obtained if the physics of the tip/quantum dot/substrate double-barrier tunnel junction is well understood.
Assuntos
Microscopia de Tunelamento/métodos , Nanopartículas/química , Cádmio/química , Miniaturização , Pontos Quânticos , Selênio/química , Semicondutores , Análise Espectral/métodosRESUMO
Control of spontaneously emitted light lies at the heart of quantum optics. It is essential for diverse applications ranging from miniature lasers and light-emitting diodes, to single-photon sources for quantum information, and to solar energy harvesting. To explore such new quantum optics applications, a suitably tailored dielectric environment is required in which the vacuum fluctuations that control spontaneous emission can be manipulated. Photonic crystals provide such an environment: they strongly modify the vacuum fluctuations, causing the decay of emitted light to be accelerated or slowed down, to reveal unusual statistics, or to be completely inhibited in the ideal case of a photonic bandgap. Here we study spontaneous emission from semiconductor quantum dots embedded in inverse opal photonic crystals. We show that the spectral distribution and time-dependent decay of light emitted from excitons confined in the quantum dots are controlled by the host photonic crystal. Modified emission is observed over large frequency bandwidths of 10%, orders of magnitude larger than reported for resonant optical microcavities. Both inhibited and enhanced decay rates are observed depending on the optical emission frequency, and they are controlled by the crystals' lattice parameter. Our experimental results provide a basis for all-solid-state dynamic control of optical quantum systems.