Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genes Cells ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965717

RESUMO

The brain utilizes glucose as a primary energy substrate but also fatty acids for the ß-oxidation in mitochondria. The ß-oxidation is reported to occur mainly in astrocytes, but its capacity and efficacy against different fatty acids remain unknown. Here, we show the fatty acid preference for the ß-oxidation in mitochondria of murine cultured astrocytes. Fatty acid oxidation assay using an extracellular flux analyzer showed that saturated or monosaturated fatty acids, palmitic acid and oleic acid, are preferred substrates over polyunsaturated fatty acids like arachidonic acid and docosahexaenoic acid. We also report that fatty acid binding proteins expressed in the astrocytes contribute less to fatty acid transport to mitochondria for ß-oxidation. Our results could give insight into understanding energy metabolism through fatty acid consumption in the brain.

2.
Neurosci Lett ; 836: 137862, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38851448

RESUMO

The endocannabinoid system has been shown to be a powerful mediator of anxiety, learning and memory, as well as nociception behaviors. Exogenous cannabinoids like delta-9-tetrahydrocannabinol mimic the naturally occurring endogenous cannabinoids found in the mammalian central and peripheral nervous system. The hydrophobic properties of endocannabinoids mean that these psychoactive compounds require help with cellular transport. A family of lipid intracellular carriers called fatty acid-binding proteins (FABPs) can bind to endocannabinoids. Pharmacological inhibition or genetic deletion of FABP subtypes 5 and 7 elevates whole-brain anandamide (AEA) levels, a type of endocannabinoid. This study examined locomotor behavior, anxiety-like behavior, and social behavior in FABP5-/- and FABP7-/- mice. Furthermore, we measured N-methyl-D-aspartate (NMDA) receptor levels in the brain to help identify potential underlying mechanisms related to the behavioral findings. Results showed that both male and female FABP5-/- mice exhibited significantly lower activity when compared with both FABP5/7+/+ (control) and FABP7-/-. For social behavior, male, but not female, FABP5-/- mice spent more time interacting with novel mice compared with controls (FABP5/7+/+) and FABP7-/- mice. No significant difference was found for anxiety-like behavior. Results from the NMDA autoradiography revealed [3H] MK-801 binding to be significantly increased within sub-regions of the striatum in FABP7-/- compared with control. In summary, these results show that FABP5 deficiency plays a significant role in locomotion activity, exploratory behavior, as well as social interaction. Furthermore, FABP7 deficiency is shown to play an important role in NMDA receptor expression, while FABP5 does not.


Assuntos
Ansiedade , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo , Locomoção , Camundongos Knockout , Receptores de N-Metil-D-Aspartato , Comportamento Social , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Ansiedade/metabolismo , Masculino , Feminino , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Locomoção/fisiologia , Camundongos , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Encéfalo/metabolismo , N-Metilaspartato/metabolismo , Proteínas de Neoplasias
4.
Sci Rep ; 14(1): 4409, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388563

RESUMO

Despite recent advances in science and medical technology, pancreatic cancer remains associated with high mortality rates due to aggressive growth and no early clinical sign as well as the unique resistance to anti-cancer chemotherapy. Current numerous investigations have suggested that ferroptosis, which is a programed cell death driven by lipid oxidation, is an attractive therapeutic in different tumor types including pancreatic cancer. Here, we first demonstrated that linoleic acid (LA) and α-linolenic acid (αLA) induced cell death with necroptotic morphological change in MIA-Paca2 and Suit 2 cell lines. LA and αLA increased lipid peroxidation and phosphorylation of RIP3 and MLKL in pancreatic cancers, which were negated by ferroptosis inhibitor, ferrostatin-1, restoring back to BSA control levels. Similarly, intraperitoneal administration of LA and αLA suppresses the growth of subcutaneously transplanted Suit-2 cells and ameliorated the decreased survival rate of tumor bearing mice, while co-administration of ferrostatin-1 with LA and αLA negated the anti-cancer effect. We also demonstrated that LA and αLA partially showed ferroptotic effects on the gemcitabine-resistant-PK cells, although its effect was exerted late compared to treatment on normal-PK cells. In addition, the trial to validate the importance of double bonds in PUFAs in ferroptosis revealed that AA and EPA had a marked effect of ferroptosis on pancreatic cancer cells, but DHA showed mild suppression of cancer proliferation. Furthermore, treatment in other tumor cell lines revealed different sensitivity of PUFA-induced ferroptosis; e.g., EPA induced a ferroptotic effect on colorectal adenocarcinoma, but LA or αLA did not. Collectively, these data suggest that PUFAs can have a potential to exert an anti-cancer effect via ferroptosis in both normal and gemcitabine-resistant pancreatic cancer.


Assuntos
Cicloexilaminas , Ferroptose , Neoplasias Pancreáticas , Fenilenodiaminas , Camundongos , Animais , Gencitabina , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos Insaturados/metabolismo , Ácido Linoleico , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA