Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39149395

RESUMO

Our consummatory decisions depend on the taste of food and the reward experienced while eating, which are processed through neural computations in interconnected brain areas. Although many gustatory regions of rodents have been explored, the mediodorsal nucleus of the thalamus (MD) remains understudied. The MD, a multimodal brain area connected with gustatory centers, is often studied for its role in processing associative and cognitive information and has been shown to represent intraorally-delivered chemosensory stimuli after strong retronasal odor-taste associations. Key questions remain about whether MD neurons can process taste quality independently of odor-taste associations and how they represent extraoral signals predicting rewarding and aversive gustatory outcomes. Here, we present electrophysiological evidence demonstrating how mouse MD neurons represent and encode 1) the identity and concentrations of basic taste qualities during active licking, and 2) auditory signals anticipating rewarding and aversive taste outcomes. Our data reveal that MD neurons can reliably and dynamically encode taste identity in a broadly tuned manner and taste concentrations with spiking activity positively and negatively correlated with stimulus intensity. Our data also show that MD can represent information related to predictive cues and their associated outcomes, regardless of whether the cue predicts a rewarding or aversive outcome. In summary, our findings suggest that the mediodorsal thalamus is integral to the taste pathway, as it can encode sensory-discriminative dimensions of tastants and participate in processing associative information essential for ingestive behaviors.

2.
Bull Math Biol ; 86(4): 38, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446260

RESUMO

Mounting empirical research suggests that the stroma, or interface between healthy and cancerous tissue, is a critical determinate of cancer invasion. At the same time, a cancer cell's location and potential to proliferate can influence its sensitivity to cancer treatments. In this paper, we use ordinary differential equations to develop spatially structured models for solid tumors wherein the growth of tumor components is coordinated. The model tumors feature two components, a proliferating peripheral growth region, which potentially includes a mix of cancerous and noncancerous stroma cells, and a solid tumor core. Mathematical and numerical analysis are used to investigate how coordinated expansion of the tumor growth region and core can influence overall growth dynamics in a variety of tumor types. Model assumptions, which are motivated by empirical and in silico solid tumor research, are evaluated through comparison to tumor volume data and existing models of tumor growth.


Assuntos
Conceitos Matemáticos , Neoplasias , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA