Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet Med Sci ; 7(3): 1023-1033, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33400394

RESUMO

BACKGROUND: Natural infections with soil-transmitted nematodes occur in non-human primates (NHPs) and have the potential to cross primate-species boundaries and cause diseases of significant public health concern. Despite the presence of NHPs in most urban centres in Kenya, comprehensive studies on their gastrointestinal parasites are scant. OBJECTIVE: Conduct a cross-sectional survey to identify zoonotic nematodes in free-ranging NHPs found within four selected urban and peri-urban centres in Kenya. METHODS: A total of 86 NHPs: 41 African green monkeys [AGMs] (Chlorocebus aethiops), 30 olive baboons (Papio anubis), 5 blue monkeys (Cercopithecus mitis stuhlmanni) and 10 red-tailed monkeys (Cercopithecus ascanius) were sampled once in situ and released back to their habitat. Microscopy was used to identify nematodes egg and larvae stages in the samples. Subsequently, PCR coupled with high-resolution melting (PCR-HRM) analysis and sequencing were used to identify nodule worms. RESULTS: NHPs inhabiting densely populated urban environs in Kenya were found infected with a rich diversity of nematodes including three potentially zoonotic nematodes including Oesophagostomum stephanostomum, Oesophagostomum bifurcum and Trichostrongylus colubriformis and co-infections were common. CONCLUSION: Phylogenetic analysis showed that O. stephanostomum from red-tailed and blue monkeys have a close evolutionary relatedness to human isolates suggesting the zoonotic potential of this parasite. Moreover, we also report the first natural co-infection of O. bifurcum and O. stephanostomum in free-ranging AGMs.


Assuntos
Cercopithecus , Chlorocebus aethiops , Coinfecção/veterinária , Gastroenteropatias/veterinária , Doenças dos Macacos/epidemiologia , Infecções por Nematoides/veterinária , Papio anubis , Animais , Coinfecção/epidemiologia , Coinfecção/parasitologia , Gastroenteropatias/epidemiologia , Gastroenteropatias/parasitologia , Quênia/epidemiologia , Doenças dos Macacos/parasitologia , Nematoides/isolamento & purificação , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/parasitologia , Zoonoses/epidemiologia , Zoonoses/parasitologia
2.
J Med Primatol ; 49(4): 165-178, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32030774

RESUMO

BACKGROUND: Simian immunodeficiency virus (SIV) naturally infects African non-human primates (NHPs) and poses a threat of transmission to humans through hunting and consumption of monkeys as bushmeat. This study investigated the as of yet unknown molecular diversity of SIV in free-ranging Chlorocebus species (African green monkeys-AGMs) and Papio anubis (olive baboons) within Mombasa, Kisumu and Naivasha urban centres in Kenya. METHODS: We collected blood samples from 124 AGMs and 65 olive baboons in situ, and detected SIV by high-resolution melting analysis and sequencing of PCR products. RESULTS: Simian immunodeficiency virus prevalence was 32% in AGMs and 3% in baboons. High-resolution melting (HRM) analysis demonstrated distinct melt profiles illustrating virus diversity confirmed by phylogenetic analysis. CONCLUSIONS: There is persistent evolutionary diversification of SIVagm strains in its natural host, AGMs and cross-species infection to olive baboons is occurring. Further study is required to establish pathogenesis of the diverse SIVagm variants and baboon immunological responses.


Assuntos
Chlorocebus aethiops , Papio anubis , Síndrome de Imunodeficiência Adquirida dos Símios/epidemiologia , Vírus da Imunodeficiência Símia/genética , Animais , Quênia/epidemiologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Especificidade da Espécie
3.
Malar J ; 16(1): 379, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927420

RESUMO

After publication of the article [1], it has been brought to our attention that a funding acknowledgement has been omitted from the original article. The authors would like to include the following, "The study was undertaken as part of the Target Malaria consortium, which receives core funding from the Bill & Melinda Gates Foundation & from the Open Philanthropy Project Fund, an advised fund of Silicon Valley Community Foundation."

4.
Malar J ; 16(1): 360, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28886724

RESUMO

BACKGROUND: Small islands serve as potential malaria reservoirs through which new infections might come to the mainland and may be important targets in malaria elimination efforts. This study investigated malaria vector species diversity, blood-meal hosts, Plasmodium infection rates, and long-lasting insecticidal net (LLIN) coverage on Mageta, Magare and Ngodhe Islands of Lake Victoria in western Kenya, a region where extensive vector control is implemented on the mainland. RESULTS: From trapping for six consecutive nights per month (November 2012 to March 2015) using CDC light traps, pyrethrum spray catches and backpack aspiration, 1868 Anopheles mosquitoes were collected. Based on their cytochrome oxidase I (COI) and intergenic spacer region PCR and sequencing, Anopheles gambiae s.l. (68.52%), Anopheles coustani (19.81%) and Anopheles funestus s.l. (11.67%) mosquitoes were differentiated. The mean abundance of Anopheles mosquitoes per building per trap was significantly higher (p < 0.001) in Mageta than in Magare and Ngodhe. Mageta was also the most populated island (n = 6487) with low LLIN coverage of 62.35% compared to Ngodhe (n = 484; 88.31%) and Magare (n = 250; 98.59%). Overall, 416 (22.27%) engorged Anopheles mosquitoes were analysed, of which 41 tested positive for Plasmodium falciparum infection by high-resolution melting (HRM) analysis of 18S rRNA and cytochrome b PCR products. Plasmodium falciparum infection rates were 10.00, 11.76, 0, and 18.75% among blood-fed An. gambiae s.s. (n = 320), Anopheles arabiensis (n = 51), An. funestus s.s. (n = 29), and An. coustani (n = 16), respectively. Based on HRM analysis of vertebrate cytochrome b, 16S rRNA and COI PCR products, humans (72.36%) were the prominent blood-meal hosts of malaria vectors, but 20.91% of blood-meals were from non-human vertebrate hosts. CONCLUSIONS: These findings demonstrate high Plasmodium infection rates among the primary malaria vectors An. gambiae s.s. and An. arabiensis, as well as in An. coustani for the first time in the region, and that non-human blood-meal sources play an important role in their ecology. Further, the higher Anopheles mosquito abundances on the only low LLIN coverage island of Mageta suggests that high LLIN coverage has been effective in reducing malaria vector populations on Magare and Ngodhe Islands.


Assuntos
Anopheles/classificação , Anopheles/parasitologia , Malária Falciparum/sangue , Malária Falciparum/epidemiologia , Plasmodium falciparum/patogenicidade , Animais , Anopheles/genética , Sangue , Citocromos b/genética , DNA de Protozoário , Ecologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Humanos , Mosquiteiros Tratados com Inseticida , Inseticidas , Ilhas , Quênia/epidemiologia , Malária/sangue , Malária/epidemiologia , Malária/genética , Malária/prevenção & controle , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Masculino , Refeições , Controle de Mosquitos/métodos , Mosquitos Vetores/classificação , Mosquitos Vetores/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Piretrinas , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA