Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Pharm Res ; 24(2): 126-35, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11339632

RESUMO

Quinacrine (QU), a phospholipase-A2 (PLA-2) inhibitor has been used clinically as a chemotherapeutic adjuvant. To understand the mechanisms leading to its chemotherapeutic effect, we have investigated QU-induced apoptotic signaling pathways in human cervical squamous carcinoma HeLa cells. In this study, we found that QU induced cytochrome c-dependent apoptotic signaling. The release of pro-apoptotic cytochrome c was QU concentration- and time-dependent, and preceded activation of caspase-9 and -3. Flow cytometric FACScan analysis using fluorescence intensities of DiOC6 demonstrated that QU-induced cytochrome c release was independent of mitochondrial permeability transition (MPT), since the concentrations of QU that induced cytochrome c release did not alter mitochondrial membrane potential (delta pai(m)). Moreover, kinetic analysis of caspase activities showed that cytochrome c release led to the activation of caspase-9 and downstream death effector, caspase-3. Caspase-3 inhibitor (Ac-DEVD-CHO) partially blocked QU-induced apoptosis, suggesting the importance of caspase-3 in this apoptotic signaling mechanism. Supplementation with arachidonic acid (AA) sustained caspase-3 activation induced by QU. Using inhibitors against cellular arachidonate metabolism of lipooxygenase (Nordihydroxyguaiaretic Acid, NDGA) and cyclooxygenase (5,8,11,14-Eicosatetraynoic Acid, ETYA) demonstrated that QU-induced apoptotic signaling may be dependent on its role as a PLA-2 inhibitor. Interestingly, NDGA attenuated QU-induced cytochrome c release, caspase activity as well as apoptotic cell death. The blockade of cytochrome c release by NDGA was much more effective than that attained with cyclosporin A (CsA), a MPT inhibitor. ETYA was not effective in blocking cytochrome c release, except under very high concentrations. Caspase inhibitor z-VAD blocked the release of cytochrome c suggesting that this signaling event is caspase dependent, and caspase-8 activation may be upstream of the mitochondrial events. In summary, we report that QU induced cytochrome c-dependent apoptotic signaling cascade, which may be dependent on its role as a PLA-2 inhibitor. This apoptotic mechanism induced by QU may contribute to its known chemotherapeutic effects.


Assuntos
Antimaláricos/farmacologia , Apoptose/efeitos dos fármacos , Grupo dos Citocromos c/fisiologia , Inibidores Enzimáticos/farmacologia , Quinacrina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/patologia , Western Blotting , Caspase 8 , Caspase 9 , Caspases/metabolismo , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Potenciais da Membrana/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fosfolipases A/antagonistas & inibidores , Fosfolipases A2 , Quinacrina/antagonistas & inibidores , Espectrometria de Fluorescência
2.
J Biol Chem ; 275(51): 39907-13, 2000 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-10986282

RESUMO

Antioxidant response element (ARE) regulates the induction of a number of cellular antioxidant and detoxifying enzymes. However, the signaling pathways that lead to ARE activation remain unknown. Here, we report that the expression of mitogen-activated protein (MAP) kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1), transforming growth factor-beta-activated kinase (TAK1), and apoptosis signal-regulating kinase (ASK1) in HepG2 cells activated the ARE reporter gene, whereas the expression of their dominant-negative mutants impaired ARE activation by the chemicals sodium arsenite and mercury chloride. Coexpression of downstream kinases, MAP kinase kinase 4, MAP kinase kinase 6, and c-Jun NH(2)-terminal kinase-1, but not MAP kinase kinase 3 and p38, augmented ARE activation by MEKK1, TAK1, and ASK1. The coexpression of a basic leucine zipper transcription factor Nrf2 but not c-Jun also greatly enhanced the activation of reporter gene by MEKK1, TAK1, and ASK1; however, a dominant-negative mutant of Nrf2 (NF-E2-related factor 2) blocked this event. Furthermore, when overexpressed, MEKK1, TAK1, and ASK1 induced the expression of heme oxygenase-1, a gene regulated by ARE, and the cotransfection with the dominant-negative mutant of Nrf2 abolished the induction. Taken together, these results suggest that MAP kinase pathways that are activated by MEKK1, TAK1, and ASK1 may link chemical signals to Nrf2, leading to the activation of ARE-dependent genes.


Assuntos
Antioxidantes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Transativadores/metabolismo , Sequência de Bases , Primers do DNA , Ativação Enzimática , Genes Reporter , Fator 2 Relacionado a NF-E2
3.
Arch Pharm Res ; 23(6): 605-12, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11156183

RESUMO

Green tea polyphenols (GTP) have been demonstrated to suppress tumorigenesis in several chemical-induced animal carcinogenesis models, and predicted as promising chemopreventive agents in human. Recent studies of GTP extracts showed the involvement of mitogen-activated protein kinases (MAPKs) in the regulation of Phase II enzymes gene expression and induction of apoptosis. In the current work we compared the biological actions of five green tea catechins: (1) induction of ARE reporter gene, (2) activation of MAP kinases, (3) cytotoxicity in human hepatoma HepG2-C8 cells, and (4) caspase activation in human cervical squamous carcinoma HeLa cells. For the induction of phase II gene assay, (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) potently induced antioxidant response element (ARE)-mediated luciferase activity, with induction observed at 25 microM with EGCG. The induction of ARE reporter gene appears to be structurally related to the 3-gallate group. Comparing the activation of MAPK by the five polyphenols, only EGCG showed potent activation of all three MAPKs (ERK, JNK and p38) in a dose- and time-dependent manner, whereas EGC activated ERK and p38. In the concentration range of 25 microM to 1 mM, EGCG and ECG strongly suppressed HepG2-ARE-C8 cell-growth. To elucidate the mechanisms of green tea polyphenol-induced apoptosis, we measured the activation of an important cell death protein, caspase-3 induced by EGCG, and found that caspase-3 was activated in a dose- and time-dependent manner. Interestingly, the activation of caspase-3 was a relatively late event (peaked at 16 h), whereas activation of MAPKs was much earlier (peaked at 2 h). It is possible, that at low concentrations of EGCG, activation of MAPK leads to ARE-mediated gene expression including phase II detoxifying enzymes. Whereas at higher concentrations of EGCG, sustained activation of MAPKs such as JNK leads to apoptosis. These mechanisms are currently under investigation in our laboratory. As the most abundant catechin in GTP extract, we found that EGCG potently induced ARE-mediated gene expression, activated MAP kinase pathway, stimulated caspase-3 activity, and induced apoptosis. These mechanisms together with others, may contribute to the overall chemopreventive function of EGCG itself as well as the GTP


Assuntos
Antioxidantes/metabolismo , Caspases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fenóis/farmacologia , Elementos de Resposta/fisiologia , Chá/química , Western Blotting , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Genes Reporter , Humanos , Luciferases/genética , Fosforilação
4.
Genetica ; 105(2): 177-92, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16220393

RESUMO

Random amplified polymorphic DNA polymerase chain reaction (RAPDPCR) was used to assess genetic diversity in four subpopulations (86 individuals) of wild barley, Hordeum spontaneum, sampled from Tabigha microsite near the Sea of Galilee, Israel. The microsite consists of two 100 m transects that are topographically separated by 100 m, each equally subdivided into 50 M of basalt and terra rossa soil types. Despite the same macroclimate characterizing the area around the Sea of Galilee, the microsite offers two edaphically different microhabitats, with basalt being a more ecologically heterogeneous and broaderniche than the relatively drier but more homogeneous and narrowniche terra rossa. Analysis of 118 putative loci revealed significant (P<0.05) genetic differentiation in polymorphism (P0.05) between the two soils across the transects with P being higher in the more heterogeneous basalt (mean P0.05 = 0.902), than in terra rossa (mean P0.05 = 0.820). Gene diversity (He) was higher in basalt (mean He=0.371), than in terra rossa (mean He=0.259). Furthermore, unique alleles were confined to one soil type, either in one or both transects. Rare alleles were observed more frequently in terra rossa than basalt, and in transect II only. Gametic phase disequilibria showed a larger multilocus association of alleles in basalt than terra rossa, and in transect I than II. Spearman rank correlation (r(s)) revealed a strong association between specific loci and soil types, and transects. Also, analysis of multilocus organization revealed soilspecific multilocusgenotypes. Therefore, our results suggest an edaphically differentiated genetic structure, which corroborates the niche widthvariation hypothesis, and can be explained, in part, by natural selection. This pattern of RAPD diversity is in agreement with allozyme and hordein protein diversities in the same subpopulations studied previously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA