Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Malar J ; 22(1): 203, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400805

RESUMO

BACKGROUND: Entomological surveillance is traditionally conducted by supervised teams of trained technicians. However, it is expensive and limiting in the number of sites visited. Surveillance through community-based collectors (CBC) may be more cost-effective and sustainable for longitudinal entomological monitoring. This study evaluated the efficiency of CBCs in monitoring mosquito densities compared to quality-assured sampling conducted by experienced entomology technicians. METHODS: Entomological surveillance employing CBCs was conducted in eighteen clusters of villages in western Kenya using indoor and outdoor CDC light traps and indoor Prokopack aspiration. Sixty houses in each cluster were enrolled and sampled once every month. Collected mosquitoes were initially identified to the genus level by CBCs, preserved in 70% ethanol and transferred to the laboratory every 2 weeks. Parallel, collections by experienced entomology field technicians were conducted monthly by indoor and outdoor CDC light traps and indoor Prokopack aspiration and served as a quality assurance of the CBCs. RESULTS: Per collection, the CBCs collected 80% fewer Anopheles gambiae sensu lato (s.l.) [RR = 0.2; (95% CI 0.14-0.27)] and Anopheles coustani [RR = 0.2; (95% CI 0.06-0.53)] and 90% fewer Anopheles funestus [RR = 0.1; (95% CI 0.08-0.19)] by CDC light traps compared to the quality assured (QA) entomology teams. Significant positive correlations were however observed between the monthly collections by CBCs and QA teams for both An. gambiae and An. funestus. In paired identifications of pooled mosquitoes, the CBCs identified 4.3 times more Anopheles compared to experienced technicians. The cost per person-night was lower in the community-based sampling at $9.1 compared to $89.3 by QA per collection effort. CONCLUSION: Unsupervised community-based mosquito surveillance collected substantially fewer mosquitoes per trap-night compared to quality-assured collection by experienced field teams, while consistently overestimating the number of Anopheles mosquitoes during identification. However, the numbers collected were significantly correlated between the CBCs and the QA teams suggesting that trends observed by CBCs and QA teams were similar. Further studies are needed to evaluate whether adopting low-cost, devolved supervision with spot checks, coupled with remedial training of the CBCs, can improve community-based collections to be considered a cost-effective alternative to surveillance conducted by experienced entomological technicians.


Assuntos
Anopheles , Malária , Animais , Humanos , Quênia/epidemiologia , Mosquitos Vetores , Comportamento Alimentar , Controle de Mosquitos
2.
Sci Rep ; 13(1): 11364, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443329

RESUMO

From August 2020 to June 2021, we assessed the efficacy of SumiShield 50WG (clothianidin), Fludora Fusion 56.25WP-SB (mixture of clothianidin and deltamethrin) and Actellic 300CS (pirimiphos-methyl) in experimental huts when partially sprayed against wild, free-flying populations of Anopheles gambiae s.l. in Tiassalé, Côte d'Ivoire. A one-month baseline period of mosquito collections was conducted to determine mosquito density and resting behavior in unsprayed huts, after which two treatments of partial indoor residual spraying (IRS) were tested: spraying only the top half of walls + ceilings or only the bottom half of walls + ceilings. These were compared to fully sprayed applications using the three IRS insecticide formulations, during twenty nights per month of collection for nine consecutive months. Mortality was assessed at the time of collection, and after a 24 h holding period (Actellic) or up to 120 h (SumiShield and Fludora Fusion). Unsprayed huts were used as a negative control. The efficacy of each partially sprayed treatment of each insecticide was compared monthly to the fully sprayed huts over the study period with a non-inferiority margin set at 10%. The residual efficacy of each insecticide sprayed was also monitored. A total of 2197 Anopheles gambiae s.l. were collected during the baseline and 17,835 during the 9-month period after spraying. During baseline, 42.6% were collected on the bottom half versus 24.3% collected on the top half of the walls, and 33.1% on the ceilings. Over the nine-month post treatment period, 73.5% were collected on the bottom half of the wall, 11.6% collected on the top half and 14.8% on the ceilings. For Actellic, the mean mortality over the nine-month period was 88.5% [87.7, 89.3] for fully sprayed huts, 88.3% [85.1, 91.4] for bottom half + ceiling sprayed walls and 80.8% [74.5, 87.1] for the top half + ceiling sprayed huts. For Fludora Fusion an overall mean mortality of 85.6% [81.5, 89.7] was recorded for fully sprayed huts, 83.7% [82.9, 84.5] for bottom half + ceiling sprayed huts and 81.3% [79.6, 83.0] for the top half + ceiling sprayed huts. For SumiShield, the overall mean mortality was 86.7% [85.3, 88.1] for fully sprayed huts, 85.6% [85.4, 85.8] for the bottom half + ceiling sprayed huts and 76.9% [76.6, 77.3] for the top half + ceiling sprayed huts. For Fludora Fusion, both iterations of partial IRS were non-inferior to full spraying. However, for SumiShield and Actellic, this was true only for the huts with the bottom half + ceiling, reflecting the resting site preference of the local vectors. The results of this study suggest that partial spraying may be a way to reduce the cost of IRS without substantially compromising IRS efficacy.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Côte d'Ivoire , Mosquitos Vetores , Malária/prevenção & controle , Resistência a Inseticidas , Piretrinas/farmacologia
3.
Insects ; 13(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35621770

RESUMO

Durability monitoring of insecticide-treated nets (ITNs) containing a pyrethroid in combination with a second active ingredient (AI) must be adapted so that the insecticidal bioefficacy of each AI can be monitored independently. An effective way to do this is to measure rapid knock down of a pyrethroid-susceptible strain of mosquitoes to assess the bioefficacy of the pyrethroid component and to use a pyrethroid-resistant strain to measure the bioefficacy of the second ingredient. To allow robust comparison of results across tests within and between test facilities, and over time, protocols for bioefficacy testing must include either characterisation of the resistant strain, standardisation of the mosquitoes used for bioassays, or a combination of the two. Through a series of virtual meetings, key stakeholders and practitioners explored different approaches to achieving these goals. Via an iterative process we decided on the preferred approach and produced a protocol consisting of characterising mosquitoes used for bioefficacy testing before and after a round of bioassays, for example at each time point in a durability monitoring study. We present the final protocol and justify our approach to establishing a standard methodology for durability monitoring of ITNs containing pyrethroid and a second AI.

4.
PLoS One ; 17(3): e0263446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35324929

RESUMO

BACKGROUND: Prospective malaria public health interventions are initially tested for entomological impact using standardised experimental hut trials. In some cases, data are collated as aggregated counts of potential outcomes from mosquito feeding attempts given the presence of an insecticidal intervention. Comprehensive data i.e. full breakdowns of probable outcomes of mosquito feeding attempts, are more rarely available. Bayesian evidence synthesis is a framework that explicitly combines data sources to enable the joint estimation of parameters and their uncertainties. The aggregated and comprehensive data can be combined using an evidence synthesis approach to enhance our inference about the potential impact of vector control products across different settings over time. METHODS: Aggregated and comprehensive data from a meta-analysis of the impact of Pirimiphos-methyl, an indoor residual spray (IRS) product active ingredient, used on wall surfaces to kill mosquitoes and reduce malaria transmission, were analysed using a series of statistical models to understand the benefits and limitations of each. RESULTS: Many more data are available in aggregated format (N = 23 datasets, 4 studies) relative to comprehensive format (N = 2 datasets, 1 study). The evidence synthesis model had the smallest uncertainty at predicting the probability of mosquitoes dying or surviving and blood-feeding. Generating odds ratios from the correlated Bernoulli random sample indicates that when mortality and blood-feeding are positively correlated, as exhibited in our data, the number of successfully fed mosquitoes will be under-estimated. Analysis of either dataset alone is problematic because aggregated data require an assumption of independence and there are few and variable data in the comprehensive format. CONCLUSIONS: We developed an approach to combine sources from trials to maximise the inference that can be made from such data and that is applicable to other systems. Bayesian evidence synthesis enables inference from multiple datasets simultaneously to give a more informative result and highlight conflicts between sources. Advantages and limitations of these models are discussed.


Assuntos
Culicidae , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Animais , Teorema de Bayes , Progressão da Doença , Armazenamento e Recuperação da Informação , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Estudos Prospectivos
5.
Malar J ; 20(1): 406, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663348

RESUMO

BACKGROUND: Pyrethroid resistance poses a major threat to the efficacy of insecticide-treated nets (ITNs) in Burkina Faso and throughout sub-Saharan Africa, particularly where resistance is present at high intensity. For such areas, there are alternative ITNs available, including the synergist piperonyl butoxide (PBO)-based ITNs and dual active ingredient ITNs such as Interceptor G2 (treated with chlorfenapyr and alpha-cypermethrin). Before deploying alternative ITNs on a large scale it is crucial to characterize the resistance profiles of primary malaria vector species for evidence-based decision making. METHODS: Larvae from the predominant vector, Anopheles gambiae sensu lato (s.l.) were collected from 15 sites located throughout Burkina Faso and reared to adults for bioassays to assess insecticide resistance status. Resistance intensity assays were conducted using WHO tube tests to determine the level of resistance to pyrethroids commonly used on ITNs at 1×, 5 × and 10 × times the diagnostic dose. WHO tube tests were also used for PBO synergist bioassays with deltamethrin and permethrin. Bottle bioassays were conducted to determine susceptibility to chlorfenapyr at a dose of 100 µg/bottle. RESULTS: WHO tube tests revealed high intensity resistance in An. gambiae s.l. to deltamethrin and alpha-cypermethrin in all sites tested. Resistance intensity to permethrin was either moderate or high in 13 sites. PBO pre-exposure followed by deltamethrin restored full susceptibility in one site and partially restored susceptibility in all but one of the remaining sites (often reaching mortality greater than 80%). PBO pre-exposure followed by permethrin partially restored susceptibility in 12 sites. There was no significant increase in permethrin mortality after PBO pre-exposure in Kampti, Karangasso-Vigué or Mangodara; while in Seguenega, Orodara and Bobo-Dioulasso there was a significant increase in mortality, but rates remained below 50%. Susceptibility to chlorfenapyr was confirmed in 14 sites. CONCLUSION: High pyrethroid resistance intensity in An. gambiae s.l. is widespread across Burkina Faso and may be a predictor of reduced pyrethroid ITN effectiveness. PBO + deltamethrin ITNs would likely provide greater control than pyrethroid nets. However, since susceptibility in bioassays was not restored in most sites following pre-exposure to PBO, Interceptor G2 may be a better long-term solution as susceptibility was recorded to chlorfenapyr in nearly all sites. This study provides evidence supporting the introduction of both Interceptor G2 nets and PBO nets, which were distributed in Burkina Faso in 2019 as part of a mass campaign.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida/normas , Mosquitos Vetores , Butóxido de Piperonila , Piretrinas , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Bioensaio , Burkina Faso , Feminino , Técnicas de Silenciamento de Genes , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida/classificação , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Sinergistas de Praguicidas
6.
Sci Rep ; 11(1): 18055, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508114

RESUMO

The scale up of indoor residual spraying (IRS) and insecticide treated nets have contributed significantly to global reductions in malaria prevalence over the last two decades. However, widespread pyrethroid resistance has necessitated the use of new and more expensive insecticides for IRS. Partial IRS with pirimiphos-methyl in experimental huts and houses in a village-wide trial was evaluated against Anopheles gambiae s.l. in northern Ghana. Four different scenarios in which either only the top or bottom half of the walls of experimental huts were sprayed, with or without also spraying the ceiling were compared. Mortality of An. gambiae s.l. on partially sprayed walls was compared with the standard procedures in which all walls and ceiling surfaces are sprayed. A small-scale trial was then conducted to assess the effectiveness, feasibility, and cost of spraying only the upper walls and ceiling as compared to full IRS and no spraying in northern Ghana. Human landing catches were conducted to estimate entomological indices and determine the effectiveness of partial IRS. An established transmission dynamics model was parameterized by an analysis of the experimental hut data and used to predict the epidemiological impact and cost effectiveness of partial IRS for malaria control in northern Ghana. In the experimental huts, partial IRS of the top (IRR 0.89, p = 0.13) or bottom (IRR 0.90, p = 0.15) half of walls and the ceiling was not significantly less effective than full IRS in terms of mosquito mortality. In the village trial, the annual entomological inoculation rate was higher for the unsprayed control (217 infective bites/person/year (ib/p/yr)) compared with the fully and partially sprayed sites, with 28 and 38 ib/p/yr, respectively. The transmission model predicts that the efficacy of partial IRS against all-age prevalence of malaria after six months would be broadly equivalent to a full IRS campaign in which 40% reduction is expected relative to no spray campaign. At scale, partial IRS in northern Ghana would have resulted in a 33% cost savings ($496,426) that would enable spraying of 36,000 additional rooms. These findings suggest that partial IRS is an effective, feasible, and cost saving approach to IRS that could be adopted to sustain and expand implementation of this key malaria control intervention.


Assuntos
Anopheles/efeitos dos fármacos , Inseticidas/administração & dosagem , Controle de Mosquitos/métodos , Compostos Organotiofosforados/administração & dosagem , Partículas e Gotas Aerossolizadas , Animais , Análise Custo-Benefício , Geografia , Gana/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Modelos Teóricos , Vigilância em Saúde Pública
7.
Malar J ; 20(1): 316, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261475

RESUMO

BACKGROUND: Following agricultural use and large-scale distribution of insecticide-treated nets (ITNs), malaria vector resistance to pyrethroids is widespread in sub-Saharan Africa. Interceptor® G2 is a new dual active ingredient (AI) ITN treated with alpha-cypermethrin and chlorfenapyr for the control of pyrethroid-resistant malaria vectors. In anticipation of these new nets being more widely distributed, testing was conducted to develop a chlorfenapyr susceptibility bioassay protocol and gather susceptibility information. METHODS: Bottle bioassay tests were conducted using five concentrations of chlorfenapyr at 12.5, 25, 50, 100, and 200 µg AI/bottle in 10 countries in sub-Saharan Africa using 13,639 wild-collected Anopheles gambiae sensu lato (s.l.) (56 vector populations per dose) and 4,494 pyrethroid-susceptible insectary mosquitoes from 8 colonized strains. In parallel, susceptibility tests were conducted using a provisional discriminating concentration of 100 µg AI/bottle in 16 countries using 23,422 wild-collected, pyrethroid-resistant An. gambiae s.l. (259 vector populations). Exposure time was 60 min, with mortality recorded at 24, 48 and 72 h after exposure. RESULTS: Median mortality rates (up to 72 h after exposure) of insectary colony mosquitoes was 100% at all five concentrations tested, but the lowest dose to kill all mosquitoes tested was 50 µg AI/bottle. The median 72-h mortality of wild An. gambiae s.l. in 10 countries was 71.5, 90.5, 96.5, 100, and 100% at concentrations of 12.5, 25, 50, 100, and 200 µg AI/bottle, respectively. Log-probit analysis of the five concentrations tested determined that the LC95 of wild An. gambiae s.l. was 67.9 µg AI/bottle (95% CI: 48.8-119.5). The discriminating concentration of 203.8 µg AI/bottle (95% CI: 146-359) was calculated by multiplying the LC95 by three. However, the difference in mortality between 100 and 200 µg AI/bottle was minimal and large-scale testing using 100 µg AI/bottle with wild An. gambiae s.l. in 16 countries showed that this concentration was generally suitable, with a median mortality rate of 100% at 72 h. CONCLUSIONS: This study determined that 100 or 200 µg AI/bottle chlorfenapyr in bottle bioassays are suitable discriminating concentrations for monitoring susceptibility of wild An. gambiae s.l., using mortality recorded up to 72 h. Testing in 16 countries in sub-Saharan Africa demonstrated vector susceptibility to chlorfenapyr, including mosquitoes with multiple resistance mechanisms to pyrethroids.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida , Inseticidas/farmacologia , Piretrinas/farmacologia , Animais , Relação Dose-Resposta a Droga
8.
Parasit Vectors ; 14(1): 320, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34118973

RESUMO

INTRODUCTION: Longitudinal monitoring of outdoor-biting malaria vector populations is becoming increasingly important in understanding the dynamics of residual malaria transmission. However, the human landing catch (HLC), the gold standard for measuring human biting rates indoors and outdoors, is costly and raises ethical concerns related to increased risk of infectious bites among collectors. Consequently, routine data on outdoor-feeding mosquito populations are usually limited because of the lack of a scalable tool with similar sensitivity to outdoor HLC. METHODOLOGY: The Anopheles trapping sensitivity of four baited proxy outdoor trapping methods-Furvela tent trap (FTT), host decoy trap (HDT), mosquito electrocuting traps (MET) and outdoor CDC light traps (OLT)-was assessed relative to HLC in a 5 × 5 replicated Latin square conducted over 25 nights in two villages of western Kenya. Indoor CDC light trap (ILT) was run in one house in each of the compounds with outdoor traps, while additional non-Latin square indoor and outdoor HLC collections were performed in one of the study villages. RESULTS: The MET, FTT, HDT and OLT sampled approximately 4.67, 7.58, 5.69 and 1.98 times more An. arabiensis compared to HLC, respectively, in Kakola Ombaka. Only FTT was more sensitive relative to HLC in sampling An. funestus in Kakola Ombaka (RR = 5.59, 95% CI 2.49-12.55, P < 0.001) and Masogo (RR = 4.38, 95% CI 1.62-11.80, P = 0.004) and in sampling An. arabiensis in Masogo (RR = 5.37, 95% CI 2.17-13.24, P < 0.001). OLT sampled significantly higher numbers of An. coustani in Kakola Ombaka (RR = 3.03, 95% CI 1.65-5.56, P < 0.001) and Masogo (RR = 2.88, 95% CI 1.15-7.22, P = 0.02) compared to HLC. OLT, HLC and MET sampled mostly An. coustani, FTT had similar proportions of An. funestus and An. arabiensis, while HDT sampled predominantly An. arabiensis in both villages. FTT showed close correlation with ILT in vector abundance for all three species at both collection sites. CONCLUSION: FTT and OLT are simple, easily scalable traps and are potential replacements for HLC in outdoor sampling of Anopheles mosquitoes. However, the FTT closely mirrored indoor CDC light trap in mosquito indices and therefore may be more of an indoor mimic than a true outdoor collection tool. HDT and MET show potential for sampling outdoor host-seeking mosquitoes. However, the traps as currently designed may not be feasible for large-scale, longitudinal entomological monitoring. Therefore, the baited outdoor CDC light trap may be the most appropriate tool currently available for assessment of outdoor-biting and malaria transmission risk.


Assuntos
Anopheles/parasitologia , Malária/prevenção & controle , Controle de Mosquitos/instrumentação , Controle de Mosquitos/normas , Animais , Entomologia/métodos , Comportamento Alimentar , Feminino , Humanos , Quênia , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Manejo de Espécimes
9.
Insects ; 13(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35055850

RESUMO

In response to growing concerns over the sustained effectiveness of pyrethroid-only based control tools, new products are being developed and evaluated. Some examples of these are dual-active ingredient (AI) insecticide-treated nets (ITNs) which contain secondary insecticides, or synergist ITNs which contain insecticide synergist, both in combination with a pyrethroid. These net types are often termed 'next-generation' insecticide-treated nets. Several of these new types of ITNs are being evaluated in large-scale randomized control trials (RCTs) and pilot deployment schemes at a country level. However, no methods for measuring the biological durability of the AIs or synergists on these products are currently recommended. In this publication, we describe a pipeline used to collate and interrogate several different methods to produce a singular 'consensus standard operating procedure (SOP)', for monitoring the biological durability of three new types of ITNs: pyrethroid + piperonyl butoxide (PBO), pyrethroid + pyriproxyfen (PPF), and pyrethroid + chlorfenapyr (CFP). This process, convened under the auspices of the Innovation to Impact programme, sought to align methodologies used for conducting durability monitoring activities of next-generation ITNs.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35284856

RESUMO

Resistance of anopheline mosquitoes to pyrethroid insecticides is spreading rapidly across sub-Saharan Africa, diminishing the efficacy of insecticide-treated nets (ITNs) - the primary tool for preventing malaria. The entomological efficacy of indoor vector control interventions can be measured in experimental hut trials (EHTs), where hut structures resemble local housing, but allow the collection of mosquitoes that entered, exited, blood-fed and/or died. There is a need to understand how the spread of resistance changes ITN efficacy and to elucidate factors influencing EHT results, including differences in experimental hut design, to support the development of novel vector control tools. A comprehensive database of EHTs was compiled following a systematic review to identify all known trials investigating ITNs or indoor residual spraying across sub-Saharan Africa. This analysis focuses on EHTs investigating ITNs and uses Bayesian statistical models to characterise the complex interaction between ITNs and mosquitoes, the between-study variability, and the impact of pyrethroid resistance. As resistance rises, the entomological efficacy of ITNs declines. They induce less mortality and are less likely to deter mosquitoes from entering huts. Despite this, ITNs continue to offer considerable personal protection by reducing mosquito feeding until resistance reaches high levels. There are clear associations between the different entomological impacts of ITNs, though there is still substantial variability between studies, some of which can be accounted for by hut design. The relationship between EHT outcomes and the level of resistance (as measured by discriminating dose bioassays) is highly uncertain. The meta-analyses show that EHTs are an important reproducible assay for capturing the complex entomological efficacy of ITNs on blood-feeding mosquitoes. The impact of pyrethroid resistance on these measures appears broadly consistent across a wide geographical area once hut design is accounted for, suggesting results can be extrapolated beyond the sites where the trials were conducted. Further work is needed to understand factors influencing EHT outcomes and how the relationship between outcomes and resistance varies when different methods are used to assess the level of resistance in wild mosquito populations. This will allow more precise estimates of the efficacy of these important vector control tools.

11.
Malar J ; 19(1): 383, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115495

RESUMO

BACKGROUND: Vector control through long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) is a major component of the Tanzania national malaria control strategy. In mainland Tanzania, IRS has been conducted annually around Lake Victoria basin since 2007. Due to pyrethroid resistance in malaria vectors, use of pyrethroids for IRS was phased out and from 2014 to 2017 pirimiphos-methyl (Actellic® 300CS) was sprayed in regions of Kagera, Geita, Mwanza, and Mara. Entomological surveillance was conducted in 10 sprayed and 4 unsprayed sites to determine the impact of IRS on entomological indices related to malaria transmission risk. METHODS: WHO cone bioassays were conducted monthly on interior house walls to determine residual efficacy of pirimiphos-methyl CS. Indoor CDC light traps with or without bottle rotator were hung next to protected sleepers indoors and also set outdoors (unbaited) as a proxy measure for indoor and outdoor biting rate and time of biting. Prokopack aspirators were used indoors to capture resting malaria vectors. A sub-sample of Anopheles was tested by PCR to determine species identity and ELISA for sporozoite rate. RESULTS: Annual IRS with Actellic® 300CS from 2015 to 2017 was effective on sprayed walls for a mean of 7 months in cone bioassay. PCR of 2016 and 2017 samples showed vector populations were predominantly Anopheles arabiensis (58.1%, n = 4,403 IRS sites, 58%, n = 2,441 unsprayed sites). There was a greater proportion of Anopheles funestus sensu stricto in unsprayed sites (20.4%, n = 858) than in sprayed sites (7.9%, n = 595) and fewer Anopheles parensis (2%, n = 85 unsprayed, 7.8%, n = 591 sprayed). Biting peaks of Anopheles gambiae sensu lato (s.l.) followed periods of rainfall occurring between October and April, but were generally lower in sprayed sites than unsprayed. In most sprayed sites, An. gambiae s.l. indoor densities increased between January and February, i.e., 10-12 months after IRS. The predominant species An. arabiensis had a sporozoite rate in 2017 of 2.0% (95% CI 1.4-2.9) in unsprayed sites compared to 0.8% (95% CI 0.5-1.3) in sprayed sites (p = 0.003). Sporozoite rates were also lower for An. funestus collected in sprayed sites. CONCLUSION: This study contributes to the understanding of malaria vector species composition, behaviour and transmission risk following IRS around Lake Victoria and can be used to guide malaria vector control strategies in Tanzania.


Assuntos
Anopheles/fisiologia , Biodiversidade , Inseticidas/administração & dosagem , Malária Falciparum/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/fisiologia , Compostos Organotiofosforados/administração & dosagem , Animais , Anopheles/efeitos dos fármacos , Malária Falciparum/transmissão , Mosquitos Vetores/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Densidade Demográfica , Estações do Ano , Esporozoítos/isolamento & purificação , Tanzânia
12.
Malar J ; 19(1): 169, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32354333

RESUMO

BACKGROUND: Between 2011 and 2018, an estimated 134.8 million pyrethroid-treated long-lasting insecticidal nets (LLINs) were distributed nationwide in the Democratic Republic of Congo (DRC) for malaria control. Pyrethroid resistance has developed in DRC in recent years, but the intensity of resistance and impact on LLIN efficacy was not known. Therefore, the intensity of resistance of Anopheles gambiae sensu lato (s.l.) to permethrin and deltamethrin was monitored before and after a mass distribution of LLINs in Kinshasa in December 2016, and in 6 other sites across the country in 2017 and 11 sites in 2018. METHODS: In Kinshasa, CDC bottle bioassays using 1, 2, 5, and 10 times the diagnostic dose of permethrin and deltamethrin were conducted using An. gambiae s.l. collected as larvae and reared to adults. Bioassays were conducted in four sites in Kinshasa province 6 months before a mass distribution of deltamethrin-treated LLINs and then two, six, and 10 months after the distribution. One site in neighbouring Kongo Central province was used as a control (no mass campaign of LLIN distribution during the study). Nationwide intensity assays were conducted in six sites in 2017 using CDC bottle bioassays and in 11 sites in 2018 using WHO intensity assays. A sub-sample of An. gambiae s.l. was tested by PCR to determine species composition and frequency of kdr-1014F and 1014S alleles. RESULTS: In June 2016, before LLIN distribution, permethrin resistance intensity was high in Kinshasa; the mean mortality rate was 43% at the 5× concentration and 73% at the 10× concentration. Bioassays at 3 time points after LLIN distribution showed considerable variation by site and time and there was no consistent evidence for an increase in pyrethroid resistance intensity compared to the neighbouring control site. Tests of An. gambiae s.l. in 6 sites across the country in 2017 and 11 sites in 2018 showed all populations were resistant to the diagnostic doses of 3 pyrethroids. In 2018, the intensity of resistance varied by site, but was generally moderate for all three pyrethroids, with survivors at ×5 the diagnostic dose. Anopheles gambiae sensu stricto (s.s.) was the most common species identified across 11 sites in DRC, but in Kinshasa, An. gambiae s.s. (91%) and Anopheles coluzzii (8%) were sympatric. CONCLUSIONS: Moderate or high intensity pyrethroid resistance was detected nationwide in DRC and is a serious threat to sustained malaria control with pyrethroid LLINs. Next generation nets (PBO nets or bi-treated nets) should be considered for mass distribution.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Inseticidas/farmacologia , Piretrinas/farmacologia , Animais , República Democrática do Congo , Feminino , Nitrilas/farmacologia , Permetrina/farmacologia
13.
Parasit Vectors ; 13(1): 239, 2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32384907

RESUMO

BACKGROUND: Millions of pyrethroid LLINs have been distributed in Mali during the past 20 years which, along with agricultural use, has increased the selection pressure on malaria vector populations. This study investigated pyrethroid resistance intensity and susceptible status of malaria vectors to alternative insecticides to guide choice of insecticides for LLINs and IRS for effective control of malaria vectors. METHODS: For 3 years between 2016 and 2018, susceptibility testing was conducted annually in 14-16 sites covering southern and central Mali. Anopheles gambiae (s.l.) were collected from larval sites and adult mosquitoes exposed in WHO tube tests to diagnostic doses of bendiocarb (0.1%) and pirimiphos-methyl (0.25%). Resistance intensity tests were conducted using CDC bottle bioassays (2016-2017) and WHO tube tests (2018) at 1×, 2×, 5×, and 10× the diagnostic concentration of permethrin, deltamethrin and alpha-cypermethrin. WHO tube tests were conducted with pre-exposure to the synergist PBO followed by permethrin or deltamethrin. Chlorfenapyr was tested in CDC bottle bioassays at 100 µg active ingredient per bottle and clothianidin at 2% in WHO tube tests. PCR was performed to identify species within the An. gambiae complex. RESULTS: In all sites An. gambiae (s.l.) showed high intensity resistance to permethrin and deltamethrin in CDC bottle bioassay tests in 2016 and 2017. In 2018, the WHO intensity tests resulted in survivors at all sites for permethrin, deltamethrin and alpha-cypermethrin when tested at 10× the diagnostic dose. Across all sites mean mortality was 33.7% with permethrin (0.75%) compared with 71.8% when pre-exposed to PBO (4%), representing a 2.13-fold increase in mortality. A similar trend was recorded for deltamethrin. There was susceptibility to pirimiphos-methyl, chlorfenapyr and clothianidin in all surveyed sites, including current IRS sites in Mopti Region. An. coluzzii was the primary species in 4 of 6 regions. CONCLUSIONS: Widespread high intensity pyrethroid resistance was recorded during 2016-2018 and is likely to compromise the effectiveness of pyrethroid LLINs in Mali. PBO or chlorfenapyr LLINs should provide improved control of An. gambiae (s.l.). Clothianidin and pirimiphos-methyl insecticides are currently being used for IRS as part of a rotation strategy based on susceptibility being confirmed in this study.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Butóxido de Piperonila , Piretrinas , Animais , Bioensaio , Feminino , Mosquiteiros Tratados com Inseticida , Larva , Malária/prevenção & controle , Mali , Controle de Mosquitos , Mosquitos Vetores
14.
Sci Rep ; 10(1): 4518, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161302

RESUMO

Indoor residual spraying (IRS) of insecticides is a major vector control strategy for malaria prevention. We evaluated the impact of a single round of IRS with the organophosphate, pirimiphos-methyl (Actellic 300CS), on entomological and parasitological parameters of malaria in Migori County, western Kenya in 2017, in an area where primary vectors are resistant to pyrethroids but susceptible to the IRS compound. Entomological monitoring was conducted by indoor CDC light trap, pyrethrum spray catches (PSC) and human landing collection (HLC) before and after IRS. The residual effect of the insecticide was assessed monthly by exposing susceptible An. gambiae s.s. Kisumu strain to sprayed surfaces in cone assays and measuring mortality at 24 hours. Malaria case burden data were extracted from laboratory records of four health facilities within the sprayed area and two adjacent unsprayed areas. IRS was associated with reductions in An. funestus numbers in the intervention areas compared to non-intervention areas by 88% with light traps (risk ratio [RR] 0.12, 95% CI 0.07-0.21, p < 0.001) and 93% with PSC collections (RR = 0.07, 0.03-0.17, p < 0.001). The corresponding reductions in the numbers of An. arabiensis collected by PSC were 69% in the intervention compared to the non-intervention areas (RR = 0.31, 0.14-0.68, p = 0.006), but there was no significant difference with light traps (RR = 0.45, 0.21-0.96, p = 0.05). Before IRS, An. funestus accounted for over 80% of Anopheles mosquitoes collected by light trap and PSC in all sites. After IRS, An. arabiensis accounted for 86% of Anopheles collected by PSC and 66% by CDC light trap in the sprayed sites while the proportion in non-intervention sites remained unchanged. No sporozoite infections were detected in intervention areas after IRS and biting rates by An. funestus were reduced to near zero. Anopheles funestus and An. arabiensis were fully susceptible to pirimiphos-methyl and resistant to pyrethroids. The residual effect of Actellic 300CS lasted ten months on mud and concrete walls. Malaria case counts among febrile patients within IRS areas was lower post- compared to pre-IRS by 44%, 65% and 47% in Rongo, Uriri and Nyatike health facilities respectively. A single application of IRS with Actellic 300CS in Migori County provided ten months protection and resulted in the near elimination of the primary malaria vector An. funestus and a corresponding reduction of malaria case count among out-patients. The impact was less on An. arabiensis, most likely due to their exophilic nature.


Assuntos
Controle de Insetos , Inseticidas/administração & dosagem , Malária/prevenção & controle , Malária/parasitologia , Compostos Organotiofosforados/administração & dosagem , Animais , Vetores de Doenças , Entomologia , Geografia Médica , Humanos , Controle de Insetos/métodos , Quênia/epidemiologia , Malária/epidemiologia , Malária/transmissão , Estações do Ano
15.
Malar J ; 18(1): 264, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370898

RESUMO

BACKGROUND: In 2017, more than 5 million house structures were sprayed through the U.S. President's Malaria Initiative, protecting more than 21 million people in sub-Saharan Africa. New IRS formulations, SumiShield™ 50WG and Fludora Fusion™ WP-SB, became World Health Organization (WHO) prequalified vector control products in 2017 and 2018, respectively. Both formulations contain the neonicotinoid active ingredient, clothianidin. The target site of neonicotinoids represents a novel mode of action for vector control, meaning that cross-resistance through existing mechanisms is less likely. In preparation for rollout of clothianidin formulations as part of national IRS rotation strategies, baseline susceptibility testing was conducted in 16 countries in sub-Saharan Africa. METHODS: While work coordinated by the WHO is ongoing to develop a suitable bottle bioassay procedure, there was no published guidance regarding clothianidin susceptibility procedures or diagnostic concentrations. Therefore, a protocol was developed for impregnating filter papers with 2% w/v SumiShield™ 50WG dissolved in distilled water. Susceptibility tests were conducted using insectary-reared reference Anopheles and wild collected malaria vector species. All tests were conducted within 24 h of treating papers, with mortality recorded daily for 7 days, due to the slow-acting nature of clothianidin against mosquitoes. Anopheles gambiae sensu lato (s.l.) adults from wild collected larvae were tested in 14 countries, with wild collected F0 Anopheles funestus s.l. tested in Mozambique and Zambia. RESULTS: One-hundred percent mortality was reached with all susceptible insectary strains and with wild An. gambiae s.l. from all sites in 11 countries. However, tests in at least one location from 5 countries produced mortality below 98%. While this could potentially be a sign of clothianidin resistance, it is more likely that the diagnostic dose or protocol requires further optimization. Repeat testing in 3 sites in Ghana and Zambia, where possible resistance was detected, subsequently produced 100% mortality. Results showed susceptibility to clothianidin in 38 of the 43 sites in sub-Saharan Africa, including malaria vectors with multiple resistance mechanisms to pyrethroids, carbamates and organophosphates. CONCLUSIONS: This study provides an interim diagnostic dose of 2% w/v clothianidin on filter papers which can be utilized by National Malaria Control Programmes and research organizations until the WHO concludes multi-centre studies and provides further guidance.


Assuntos
Anopheles/efeitos dos fármacos , Guanidinas/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores/efeitos dos fármacos , Neonicotinoides/farmacologia , Tiazóis/farmacologia , África Subsaariana , Animais , Controle de Doenças Transmissíveis , Malária/transmissão , Valores de Referência
16.
Nat Commun ; 9(1): 4982, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478327

RESUMO

Indoor residual spraying (IRS) is an important part of malaria control. There is a growing list of insecticide classes; pyrethroids remain the principal insecticide used in bednets but recently, novel non-pyrethroid IRS products, with contrasting impacts, have been introduced. There is an urgent need to better assess product efficacy to help decision makers choose effective and relevant tools for mosquito control. Here we use experimental hut trial data to characterise the entomological efficacy of widely-used, novel IRS insecticides. We quantify their impact against pyrethroid-resistant mosquitoes and use a Plasmodium falciparum transmission model to predict the public health impact of different IRS insecticides. We report that long-lasting IRS formulations substantially reduce malaria, though their benefit over cheaper, shorter-lived formulations depends on local factors including bednet use, seasonality, endemicity and pyrethroid resistance status of local mosquito populations. We provide a framework to help decision makers evaluate IRS product effectiveness.


Assuntos
Inseticidas/toxicidade , Plasmodium falciparum/efeitos dos fármacos , África , Animais , Culicidae/efeitos dos fármacos , Mosquiteiros Tratados com Inseticida , Malária/parasitologia , Saúde Pública , Piretrinas/toxicidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo
17.
Malar J ; 17(1): 129, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29580247

RESUMO

BACKGROUND: Globally, the Democratic Republic of Congo (DRC) accounted for 9% of malaria cases and 10% of malaria deaths in 2015. As part of control efforts, more than 40 million long-lasting insecticidal nets (LLINs) were distributed between 2008 and 2013, resulting in 70% of households owning one or more LLINs in 2014. To optimize vector control efforts, it is critical to monitor vector behaviour and insecticide resistance trends. Entomological data was collected from eight sentinel sites throughout DRC between 2013 and 2016 in Kingasani, Mikalayi, Lodja, Kabondo, Katana, Kapolowe, Tshikaji and Kalemie. Mosquito species present, relative densities and biting times were monitored using human landing catches (HLC) conducted in eight houses, three times per year. HLC was conducted monthly in Lodja and Kapolowe during 2016 to assess seasonal dynamics. Laboratory data included resistance mechanism frequency and sporozoite rates. Insecticide susceptibility testing was conducted with commonly used insecticides including deltamethrin and permethrin. Synergist bioassays were conducted with PBO to determine the role of oxidases in permethrin resistance. RESULTS: In Lodja, monthly Anopheles gambiae s.l. biting rates were consistently high at > 10 bites/person/night indoors and outdoors. In Kapolowe, An. gambiae s.l. dominated during the rainy season, and Anopheles funestus s.l. during the dry season. In all sites, An. gambiae and An. funestus biting occurred mostly late at night. In Kapolowe, significant biting of both species started around 19:00, typically before householders use nets. Sporozoite rates were high, with a mean of 4.3% (95% CI 3.4-5.2) for An. gambiae and 3.3% (95% CI 1.3-5.3) for An. funestus. Anopheles gambiae were resistant to permethrin in six out of seven sites in 2016. In three sites, susceptibility to deltamethrin was observed despite high frequency permethrin resistance, indicating the presence of pyrethroid-specific resistance mechanisms. Pre-exposure to PBO increased absolute permethrin-associated mortality by 24%, indicating that resistance was partly due to metabolic mechanisms. The kdr-1014F mutation in An. gambiae was present at high frequency (> 70%) in three sites (Kabondo, Kingasani and Tshikaji), and lower frequency (< 20%) in two sites (Lodja and Kapolowe). CONCLUSION: The finding of widespread resistance to permethrin in DRC is concerning and alternative insecticides should be evaluated.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/fisiologia , Animais , República Democrática do Congo , Comportamento Alimentar , Mordeduras e Picadas de Insetos/etiologia , Malária , Nitrilas/farmacologia , Permetrina/farmacologia , Piretrinas/farmacologia
18.
Malar J ; 16(1): 477, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162120

RESUMO

BACKGROUND: There is growing concern that malaria vector resistance to pyrethroid insecticides may reduce the effectiveness of long-lasting insecticidal nets (LLINs). Combination LLINs are designed to control susceptible and pyrethroid-resistant mosquito populations through a mixture of pyrethroid with piperonyl butoxide (PBO) synergist. A cluster randomized trial with entomology outcome measures was conducted in Mali to determine the added benefit over mono-treated pyrethroid predecessors. Four LLIN treatments; permethrin + PBO, permethrin, deltamethrin + PBO, and deltamethrin, were randomly allocated to four villages each (16 villages total) and distributed to cover every sleeping place. Entomological monitoring of indoor Anopheles resting densities, host preference, vector longevity, and sporozoite rates were monitored every 2 months over 2 years in 2014 and 2015. RESULTS: Bottle bioassays confirmed permethrin and deltamethrin resistance in Anopheles gambiae sensu lato (s.l.), (the predominant species throughout the study) with pre-exposure to PBO indicating partial involvement of oxidases. Between 2014 and 2015 the mean indoor resting density was greater in the deltamethrin + PBO LLIN arm than the deltamethrin LLIN arm at 3.05 (95% CI 3.00-3.10) An. gambiae s.l. per room per day compared with 1.9 (95% CI 1.87-1.97). There was no significant difference in sporozoite rate at 3.97% (95% CI 2.91-5.02) for the deltamethrin LLIN arm and 3.04% (95% CI 2.21-3.87) for deltamethrin + PBO LLIN arm (P = 0.17). However, when analysed by season there was some evidence that the sporozoite rate was lower in the deltamethrin + PBO LLIN arm than deltamethrin LLIN arm during the rainy/high malaria transmission seasons at 1.95% (95% CI 1.18-2.72) and 3.70% (95% CI 2.56-4.84) respectively (P = 0.01). CONCLUSIONS: While there was some evidence that An. gambiae s.l. sporozoite rates were lower in villages with deltamethrin + PBO LLINs during the high malaria transmission seasons of 2014-2015, there was no reduction in parity rates or indoor resting densities. There was also no evidence that permethrin + PBO LLINs provided any improved control when compared with permethrin LLINs. Combination nets may have a greater impact in areas where mixed function oxidases play a more important role in pyrethroid resistance.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Controle de Mosquitos , Mosquitos Vetores , Animais , Anopheles/parasitologia , Anopheles/fisiologia , Análise por Conglomerados , Sinergismo Farmacológico , Longevidade , Mali , Mosquitos Vetores/parasitologia , Mosquitos Vetores/fisiologia , Nitrilas , Permetrina , Butóxido de Piperonila , Piretrinas , População Rural
19.
Malar J ; 16(1): 82, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28212636

RESUMO

BACKGROUND: A novel, insecticide-treated, durable wall lining (ITWL), which mimics indoor residual spraying (IRS), has been developed to provide prolonged vector control when fixed to the inner walls of houses. PermaNet® ITWL is a polypropylene material containing non-pyrethroids (abamectin and fenpyroximate) which migrate gradually to the surface. METHODS: An experimental hut trial was conducted in an area of pyrethroid-resistant Anopheles gambiae s.l. and Anopheles funestus s.s. to compare the efficacy of non-pyrethroid ITWL, long-lasting insecticidal nets (LLIN) (Interceptor®), pyrethroid ITWL (ZeroVector®), and non-pyrethroid ITWL + LLIN. RESULTS: The non-pyrethroid ITWL produced relatively low levels of mortality, between 40-50% for An. funestus and An. gambiae, across all treatments. Against An. funestus, the non-pyrethroid ITWL when used without LLIN produced 47% mortality but this level of mortality was not significantly different to that of the LLIN alone (29%, P = 0.306) or ITWL + LLIN (35%, P = 0.385). Mortality levels for An. gambiae were similar to An. funestus with non-pyrethroid ITWL, producing 43% mortality compared with 26% for the LLIN. Exiting rates from ITWL huts were similar to the control and highest when the LLIN was present. An attempt to restrict mosquito access by covering the eave gap with ITWL (one eave open vs four open) had no effect on numbers entering. The LLIN provided personal protection when added to the ITWL with only 30% blood-fed compared with 69 and 56% (P = 0.001) for ITWL alone. Cone bioassays on ITWL with 30 min exposure after the trial produced mortality of >90% using field An. gambiae. CONCLUSIONS: Despite high mortality in bioassays, the hut trial produced only limited mortality which was attributed to pyrethroid resistance against the pyrethroid ITWL and low efficacy in the non-pyrethroid ITWL. Hut ceilings were left uncovered and may have served as a potential untreated refuge. By analogy to IRS campaigns, which also do not routinely treat ceilings, high community coverage with ITWL may still reduce malaria transmission. Restriction of eave gaps by 75% proved an inadequate barrier to mosquito entry. The findings represent the first 2 months after installation and do not necessarily predict long-term efficacy.


Assuntos
Anopheles , Benzoatos , Resistência a Inseticidas , Inseticidas , Ivermectina/análogos & derivados , Controle de Mosquitos , Pirazóis , Piretrinas , Animais , Humanos , Malária/prevenção & controle , Polipropilenos , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA