RESUMO
BACKGROUND: Machine Learning has been increasingly used in the medical field, including managing patients undergoing hemodialysis. The random forest classifier is a Machine Learning method that can generate high accuracy and interpretability in the data analysis of various diseases. We attempted to apply Machine Learning to adjust dry weight, the appropriate volume status of patients undergoing hemodialysis, which requires a complex decision-making process considering multiple indicators and the patient's physical conditions. METHODS: All medical data and 69,375 dialysis records of 314 Asian patients undergoing hemodialysis at a single dialysis center in Japan between July 2018 and April 2020 were collected from the electronic medical record system. Using the random forest classifier, we developed models to predict the probabilities of adjusting the dry weight at each dialysis session. RESULTS: The areas under the receiver-operating-characteristic curves of the models for adjusting the dry weight upward and downward were 0.70 and 0.74, respectively. The average probability of upward adjustment of the dry weight had sharp a peak around the actual change over time, while the average probability of downward adjustment of the dry weight formed a gradual peak. Feature importance analysis revealed that median blood pressure decline was a strong predictor for adjusting the dry weight upward. In contrast, elevated serum levels of C-reactive protein and hypoalbuminemia were important indicators for adjusting the dry weight downward. CONCLUSIONS: The random forest classifier should provide a helpful guide to predict the optimal changes to the dry weight with relative accuracy and may be useful in clinical practice.
Assuntos
Asiático , Alterações do Peso Corporal , Aprendizado de Máquina , Diálise Renal , Humanos , Pressão Sanguínea , Peso Corporal , Algoritmo Florestas Aleatórias , JapãoRESUMO
BACKGROUND: Some attempts have been made to detect atrial fibrillation (AF) with a wearable device equipped with photoelectric volumetric pulse wave technology, and it is expected to be applied under real clinical conditions. OBJECTIVE: This study is the second part of a 2-phase study aimed at developing a method for immediate detection of paroxysmal AF, using a wearable device with built-in photoplethysmography (PPG). The objective of this study is to develop an algorithm to immediately diagnose AF by an Apple Watch equipped with a PPG sensor that is worn by patients undergoing cardiac surgery and to use machine learning on the pulse data output from the device. METHODS: A total of 80 patients who underwent cardiac surgery at a single institution between June 2020 and March 2021 were monitored for postoperative AF, using a telemetry-monitored electrocardiogram (ECG) and an Apple Watch. AF was diagnosed by qualified physicians from telemetry-monitored ECGs and 12-lead ECGs; a diagnostic algorithm was developed using machine learning on the pulse rate data output from the Apple Watch. RESULTS: One of the 80 patients was excluded from the analysis due to redness caused by wearing the Apple Watch. Of 79 patients, 27 (34.2%) developed AF, and 199 events of AF including brief AF were observed. Of them, 18 events of AF lasting longer than 1 hour were observed, and cross-correlation analysis showed that pulse rate measured by Apple Watch was strongly correlated (cross-correlation functions [CCF]: 0.6-0.8) with 8 events and very strongly correlated (CCF>0.8) with 3 events. The diagnostic accuracy by machine learning was 0.9416 (sensitivity 0.909 and specificity 0.838 at the point closest to the top left) for the area under the receiver operating characteristic curve. CONCLUSIONS: We were able to safely monitor pulse rate in patients who wore an Apple Watch after cardiac surgery. Although the pulse rate measured by the PPG sensor does not follow the heart rate recorded by telemetry-monitored ECGs in some parts, which may reduce the accuracy of AF diagnosis by machine learning, we have shown the possibility of clinical application of using only the pulse rate collected by the PPG sensor for the early detection of AF.
RESUMO
This study aims to implement three-dimensional convolutional neural networks (3D-CNN) for clinical target volume (CTV) segmentation for whole breast irradiation and investigate the focus of 3D-CNNs during decision-making using gradient-weighted class activation mapping (Grad-CAM). A 3D-UNet CNN was adopted to conduct automatic segmentation of the CTV for breast cancer. The 3D-UNet was trained using three datasets of left-, right-, and both left- and right-sided breast cancer patients. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC). Grad-CAM was applied to trained CNNs. The DSCs for the datasets of the left-, right-, and both left- and right-sided breasts were on an average 0.88, 0.89, and 0.85, respectively. The Grad-CAM heatmaps showed that the 3D-UNet used for segmentation determined the CTV region from the target-side breast tissue and by referring to the opposite-side breast. Although the size of the dataset was limited, DSC ≥ 0.85 was achieved for the segmentation of breast CTV using the 3D-UNet. Grad-CAM indicates the applicable scope and limitations of using a CNN by indicating the focus of such networks during decision-making.