Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
PLoS Genet ; 17(11): e1009877, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34818334

RESUMO

Injured axons must regenerate to restore nervous system function, and regeneration is regulated in part by external factors from non-neuronal tissues. Many of these extrinsic factors act in the immediate cellular environment of the axon to promote or restrict regeneration, but the existence of long-distance signals regulating axon regeneration has not been clear. Here we show that the Rab GTPase rab-27 inhibits regeneration of GABAergic motor neurons in C. elegans through activity in the intestine. Re-expression of RAB-27, but not the closely related RAB-3, in the intestine of rab-27 mutant animals is sufficient to rescue normal regeneration. Several additional components of an intestinal neuropeptide secretion pathway also inhibit axon regeneration, including NPDC1/cab-1, SNAP25/aex-4, KPC3/aex-5, and the neuropeptide NLP-40, and re-expression of these genes in the intestine of mutant animals is sufficient to restore normal regeneration success. Additionally, NPDC1/cab-1 and SNAP25/aex-4 genetically interact with rab-27 in the context of axon regeneration inhibition. Together these data indicate that RAB-27-dependent neuropeptide secretion from the intestine inhibits axon regeneration, and point to distal tissues as potent extrinsic regulators of regeneration.


Assuntos
Axônios/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Neurônios GABAérgicos/fisiologia , Intestinos/metabolismo , Regeneração , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab27 de Ligação ao GTP/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Transdução de Sinais , Vesículas Sinápticas/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP/genética
2.
J Cell Biol ; 219(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31968056

RESUMO

Maladaptive responses to stress might play a role in the sensitivity of neurons to stress. To identify novel cellular responses to stress, we performed transcriptional analysis in acutely stressed mouse neurons, followed by functional characterization in Caenorhabditis elegans. In both contexts, we found that the gene GDPGP1/mcp-1 is down-regulated by a variety of stresses. Functionally, the enzyme GDPGP1/mcp-1 protects against stress. Knockdown of GDPGP1 in mouse neurons leads to widespread neuronal cell death. Loss of mcp-1, the single homologue of GDPGP1 in C. elegans, leads to increased degeneration of GABA neurons as well as reduced survival of animals following environmental stress. Overexpression of mcp-1 in neurons enhances survival under hypoxia and protects against neurodegeneration in a tauopathy model. GDPGP1/mcp-1 regulates neuronal glycogen levels, indicating a key role for this metabolite in neuronal stress resistance. Together, our data indicate that down-regulation of GDPGP1/mcp-1 and consequent loss of neuronal glycogen is a maladaptive response that limits neuronal stress resistance and reduces survival.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Glucosiltransferases/genética , Degeneração Neural/genética , Neurônios/metabolismo , Animais , Apoptose/genética , Caenorhabditis elegans/genética , Dano ao DNA/genética , Modelos Animais de Doenças , Glicogênio/genética , Glicogênio/metabolismo , Humanos , Camundongos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA