RESUMO
Ferulic acid ((E)-3-(4-hydroxy-3-methoxy-phenyl) prop-2-enoic acid) is a derivative of caffeic acid found in most plants. This abundant phenolic compound exhibits significant antioxidant capacity and a broad spectrum of therapeutic effects, including anti-inflammatory, antimicrobial, anticancer, antidiabetic, cardiovascular and neuroprotective activities. It is absorbed more quickly by the body and stays in the bloodstream for a longer period compared with other phenolic acids. It is widely used in the food (namely whole grains, fruits, vegetables and coffee), pharmaceutical and cosmetics industries. The current review highlights ferulic acid and its pharmacological activities, reported mechanisms of action, food applications (food preservative, food additive, food processing, food supplements and in food packaging in the form of edible films) and role in human health. In the future, the demand for ferulic acid in the food and pharmaceutical industries will increase. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMO
Science and food industry must strive to ensure and improve edible insect's benefits, and especially their safety and nutritional value. This study investigated how various food substrates used in the rearing of Tenebrio molitor larvae influence their growth, the safety of the larvae, and the nutritional quality of the resulting flour. The main findings indicate that all samples showed significant differences in their nutritional profile, larval characteristics, and heavy metal content. Regarding the content of protein, fat and fiber it ranges from 44.1 to 51.8 %, 28.6-34.8 % and 10.5-14.9 %, respectively. These results suggest that insect diet is a very crucial parameter that can affect all that factors and must be taken into account, especially when they are intended as raw materials to be used for food production.
RESUMO
Berberis aristata, commonly known as Indian barberry, has been traditionally used for its medicinal properties. Despite its recognized pharmacological benefits, its potential application in the food industry remains underexplored. This study aims to investigate the proximate analysis and techno-functional properties of Berberis aristata root powder to evaluate its feasibility as a functional food ingredient. The root powder of Berberis aristata was subjected to proximate analysis to determine its moisture, ash, protein, fat, fiber, and carbohydrate content. Techno-functional properties, including water and oil absorption capacity, emulsifying and foaming properties, and bulk density, were evaluated using standardized analytical techniques. The proximate analysis revealed a high fiber content and a significant number of bioactive compounds. The root powder exhibited favorable water and oil absorption capacities, making it suitable for use as a thickening and stabilizing agent. Emulsifying and foaming properties were comparable to conventional food additives, indicating their potential in various food formulations. The findings suggest that Berberis aristata root powder possesses desirable techno-functional properties that could be leveraged in the food industry. Its high fiber content and bioactive compounds offer additional health benefits, making it a promising candidate for functional food applications. Further research on its incorporation into different food matrices and its sensory attributes is recommended to fully establish its utility.
RESUMO
BACKGROUND: An increasing incidence of metabolic disorders emphasizes the need to explore natural treatments. Spirulina, a microalga with a rich nutrient profile, offers a promising solution for obesity, diabetes, and inflammation. This study provides a meticulous analysis of spirulina powder, evaluating its physicochemical attributes and technofunctional properties through the use of advanced analytical techniques. RESULTS: Spirulina powder demonstrated strong flowability, substantial water and oil absorption capacity, and moderate foaming characteristics. The ethanolic extract of spirulina was found to be a repository of phenolic (6.93 mg GAE/g) and flavonoid (7.17 mg QE/g) compounds, manifesting considerable antioxidant activity with a 58.49 g kg-1 inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals. The extract also exhibited pronounced inhibitory effects on lipase and amylase enzymes, with inhibition percentages of 72.05 g kg-1 and 70.28 g kg-1, respectively, and displayed a glucose retention capacity of 1.28 mg dL-1 (68.52 g kg-1) in a dialysis membrane assay. These results suggest its efficacy in modulating obesity and glycemic control. The powder also showed a potent anti-inflammatory response by mitigating protein denaturation. CONCLUSION: Spirulina powder is a potent natural agent with multiple health benefits, meriting its incorporation into functional foods. It could be suitable for application in the food industry, offering a natural strategy to combat metabolic diseases. This research adds to the scientific literature on spirulina, paving the way for future research into its utilization. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMO
Vitamin B12, a water-soluble essential micronutrient, plays a pivotal role in numerous physiological processes in the human body. This review meticulously examines the structural complexity and the diverse mechanisms through which vitamin B12 exerts its preventive effects against a spectrum of health conditions, including pernicious anaemia, neurological disorders, obesity, diabetes, dyslipidaemia and complications in foetal development. The selection of articles for this review was conducted through a systematic search across multiple scientific databases, including PubMed, Scopus and Web of Science. Criteria for inclusion encompassed relevance to the biochemical impact of vitamin B12 on health, peer-reviewed status and publication within the last decade. Exclusion criteria were non-English articles and studies lacking empirical evidence. This stringent selection process ensured a comprehensive analysis of vitamin B12's multifaceted impact on health, covering its structure, bioavailable forms and mechanisms of action. Clinical studies highlighting its therapeutic potential, applications in food fortification and other utilizations are also discussed, underscoring the nutrient's versatility. This synthesis aims to provide a clear understanding of the integral role of vitamin B12 in maintaining human health and its potential in clinical and nutritional applications. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
RESUMO
Heterocyclic aromatic amines (HAAs) constitute a group of highly toxic organic compounds strongly associated with the onset of various types of cancer. This paper aims to serve as a valuable resource for food scientists working towards a better understanding of these compounds including formation, minimizing strategies, analysis, and toxicity as well as addressing existing gaps in the literature. Despite extensive research conducted on these compounds since their discovery, several aspects remain inadequately understood, necessitating further investigation. These include their formation pathways, toxic mechanisms, effective mitigation strategies, and specific health effects on humans. Nonetheless, recent research has yielded promising results, contributing significantly to our understanding of HAAs by proposing new potential formation pathways and innovative strategies for their reduction.
Assuntos
Aminas , Compostos Heterocíclicos , Humanos , Carcinógenos/toxicidade , NeoplasiasRESUMO
Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, ß-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of ß-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.
Assuntos
Caseínas , Endorfinas , Humanos , Animais , Caseínas/química , Caseínas/metabolismo , Caseínas/genética , Endorfinas/química , Endorfinas/metabolismo , Leite/química , Leite/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/genética , Peptídeos Opioides/química , Peptídeos Opioides/metabolismo , BovinosRESUMO
This study investigated food safety issues as perceived by food companies and food safety authorities in six countries in Europe and Central Asia. A total of 66 companies and 16 authorities participated in the survey. The results provide important insights related to what the main food safety priorities are, how they are addressed in the countries that participated in the survey, and what the role of the main stakeholders is in the food value chain. Almost 50% of food companies identified 'food fraud' as the most influential food safety attribute. One-third of food safety authorities recognized 'food safety management system' as the most influential food safety attribute. Principal component analysis separated food safety statements into two dimensions named 'food safety hazards and risks' and 'food safety system'. Although there are slight differences in food safety statements between the two stakeholders, i.e., food companies and food safety authorities, it is the country of origin that plays a more important role in understanding their views. Food companies will need to implement a systemic approach and transform the entire food value chain continuum while considering new food safety challenges. It is expected that food safety authorities will have to play a more proactive role in the future.
RESUMO
The inhibitory effects of liquiritigenin, liquiritin and glycyrrhizic acid against the hazards during the preparation of thermal reaction beef flavoring were investigated using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Liquiritigenin(1.5 mM) inhibited Nε-carboxymethyl-L-lysine and Nε-carboxyethyl-L-lysine by up to 38.69 % and 61.27 %, respectively; 1.5 mM liquiritin inhibited 4-methylimidazole by up to 48.28 %; and 1.5 mM liquiritigenin and 1.0 mM liquiritin inhibited hydroxymethylfurfural by up to 61.20 % and 59.31 %, respectively. The results of the model system showed that the inhibitory effect of the 3 inhibitors could be extended to other thermal reaction flavoring systems. The 3 inhibitors can effectively block key intermediates in beef flavoring, and liquiritigenin can inhibit up to 22.97 % of glyoxal and 22.89 % of methylglyoxal. In addition, liquiritigenin and liquiritin can directly eliminate up to 25.87 % and 21.01 % of methylglyoxal by addition and other means. Free radicals in the simultaneous formation model system were measured using electron spin resonance (ESR), and the results showed that liquiritigenin, liquiritin and glycyrrhizic acid could scavenge free radicals in the system in a dose-dependent manner, with scavenging rates of up to 44.88-57.09 %. Therefore, the inhibitory effects of the 3 inhibitors can be attributed to the intermediate blocking and free radical scavenging pathways.
Assuntos
Produtos Finais de Glicação Avançada , Ácido Glicirrízico , Animais , Bovinos , Ácido Glicirrízico/farmacologia , Espectrometria de Massas em Tandem , Aldeído Pirúvico , Lisina/análise , Carne/análise , Radicais LivresRESUMO
Frying is one of the most popular and traditional processes used in the food industry and food services to manufacture products that are high in quality and with unique sensory characteristics. The most common method of frying is deep-fat frying, used worldwide due to its distinct flavor profile and sensory aspects, which leads to physio-chemical changes at both macro and micro levels. One of the major concerns with deep-fried foods is their high oil content, and a variety of metabolic disorders can be caused by overconsumption of these foods, including heart disease, obesity, and high cholesterol. Due to their enticing organoleptic properties with their delicious flavor, pleasing mouthfeel, and unique taste, making them irresistible, it is also responsible for undesirable and unacceptable characteristics for consumers. Oil absorption can be reduced by developing novel frying methods that limit the amount of oil in products, producing products with fewer calories and oil while maintaining similar quality, flavor, and edibility. In addition, different pretreatments and post-frying treatments are applied to achieve a synergistic effect. The transfer of mass and heat occurs simultaneously during frying, which helps to understand the mechanism of oil absorption in fried food. Researchers have discovered that prolonged heating of oils results in polar compounds such as polymers, dimers, free fatty acids, and acrylamide, which can alter metabolism and cause cancer. To reduce the oil content in fried food, innovative frying methods have been developed without compromising its quality which also has improved their effect on human health, product quality, and energy efficiency. The aim is to replace the conventional frying process with novel frying methods that offer fried food-like properties, higher nutritional value, and ease of use by replacing the conventional frying process. In the future, it might be possible to optimize frying technologies to substantially reduce fried foods' oil content. This review focuses on a detailed understanding of different frying techniques and attempts to focus on innovative frying techniques such as vacuum frying, microwave cooking, and hot-air frying that have shown a better potential to be used as an alternative to traditional frying.
Assuntos
Indústria Alimentícia , Serviços de Alimentação , Humanos , Acrilamida , Comércio , CulináriaRESUMO
Heterocyclic aromatic amines (HAAs) are detrimental substances can develop during the high-temperature cooking of protein-rich foods, such as meat. They are potent mutagens and carcinogens linked to an increased risk of various cancers. HAAs have complex structures with nitrogen-containing aromatic rings and are formed through chemical reactions between amino acids, creatin(in)e, and sugars during cooking. The formation of HAAs is influenced by various factors, such as food type, cooking temperature, time, cooking method, and technique. HAAs exert their toxicity through mechanisms like DNA adduct formation, oxidative stress, and inflammation. The research on HAAs is important for public health and food safety, leading to risk assessment and management strategies. It has also led to innovative approaches for reducing HAAs formation during cooking and minimizing related health risks. Understanding HAAs' chemistry and formation is crucial for developing effective ways to prevent their occurrence and protect human health. The current review presents an overview about HAAs, their formation pathways, and the factors influencing their formation. Additionally, it reviews their adverse health effects, occurrence, and the analytical methods used for measuring them.
Assuntos
Aminas , Aminoácidos , Humanos , Aminas/toxicidade , Carne , Estresse Oxidativo , Carcinógenos/toxicidadeRESUMO
Nine different black garlic samples aged at varying temperatures and durations were added to the patties at 0.5% and 1% ratios and compared with raw garlic in terms of polycyclic aromatic hydrocarbons (PAHs) formation. The results showed that black garlic caused a reduction in the patties' content of ∑PAH8 by 38.17% to 94.12% compared to raw garlic, with the highest reduction percent in the patties fortified with 1% black garlic aged at 70 °C for 45 days. Beef patties fortified with black garlic reduced human exposure to PAHs from beef patties (from 1.66E to 01 to 6.04E-02 ng-TEQBaP kg-1 bw per day). The negligible cancer risk associated with exposure to PAHs through the consumption of beef patties was confirmed by very low ILCR (incremental lifetime cancer risk) values of 5.44E-14 and 4.75E-12. Finally, patty fortification with black garlic could be suggested as an effective way to reduce PAHs formation and exposure from patties.
Assuntos
Alho , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Animais , Bovinos , Humanos , Idoso , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Temperatura , Medição de Risco , Monitoramento AmbientalRESUMO
BACKGROUND: This investigation provides an important insight into Eurasian consumers' food safety beliefs and trust issues influenced by the COVID-19 pandemic. An online survey was conducted in 15 European and Asian countries involving more than 4000 consumers. RESULTS: It has confirmed that different socioeconomic characteristics, cultural aspects and education levels shape food safety perceptions within Eurasian countries. The COVID-19 pandemic influenced their beliefs and trust in food safety, which is relatively low on average. However, it is significantly higher for European consumers (especially European Union ones) compared to their Asian counterparts. Both Asian and European respondents agreed that food fraud and climate changes represent a food safety issue. However, European consumers were less concerned regarding the food safety of genetically modified foods and meat and dairy analogs/hybrids. Asian consumers were, to a greater extent, worried about the risk of getting COVID-19 from food, restaurants, food retail establishments and home food deliveries. CONCLUSION: Eurasian consumers have put their greatest extent of trust, when food safety assurance is concerned, into food scientists and food producers holding a food safety certificate. Broadly, they are uncertain to what extent their federal governments and food inspectors are competent, able and efficient in ensuring food safety. Higher education of Eurasian consumers was followed by increased food safety confidence in all parts of the food chain. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/epidemiologia , Inocuidade dos Alimentos , Carne , Inquéritos e QuestionáriosRESUMO
Nanofibers, produced through the novel method of electrospinning, have a high ratio of surface area to volume, which allows them to have different optical, electrical, thermal, and mechanical properties than macroscale materials. In this study, it was aimed to produce nanofibers with gelatin and curcumin. The effects of gelatin concentration and crosslinking with citric acid on the characteristics of electrospun nanofibers were studied. Gelatin film containing neither citric acid nor curcumin was used as control. Solutions were evaluated by solution conductivity, color analysis, and rheological properties. Obtained nanofibers were characterized by morphological analysis (SEM), antioxidant activity (AA), thermal properties (TGA, XRD, DSC), water vapor permeability (WVP), and Fourier transform infrared (FTIR) analysis. It was found that the functional groups of gelatin were not changed significantly but some degree of crosslinking was seen, as indicated by the changes in AA, crystallinity, etc. Improvement in antioxidant activities was seen, which was the highest for gelatin and curcumin films (32%). The highest melting temperature (78 °C) and WVP (2.365 × 10-10 gm-1 s-1 Pa-1) was seen for gelatin and curcumin films crosslinked with 0.5% citric acid. Gelatin with curcumin films crosslinked with 1% citric acid showed the lowest crystallinity (1.56%). It was concluded that even though citric acid might not prove to be a stable crosslinking agent for the protein (gelatin), it contributed to the antioxidant nature of the films, along with curcumin. These films are promising candidates to be applied on cut fruits, to reduce water loss and oxidation and hence extend their shelf lives.
RESUMO
Ganoderma lucidum is a medicinal mushroom that has been traditionally used in Chinese medicine for centuries. It has been found to have a wide range of medicinal properties, including antioxidant, anti-inflammatory, and immune-boosting effects. Recent research has focused on the potential benefits of G. lucidum in treating metabolic disorders such as diabetes and obesity, as well as its possible role in preventing and treating infections caused by the coronavirus. Triterpenoids are a major group of bioactive compounds found in G. lucidum, and they have a range of biological activities, including anti-inflammatory and antioxidant properties. These compounds have been found to improve insulin sensitivity and lower blood sugar levels in animal models of diabetes. Additionally, G. lucidum polysaccharides have been found to reduce bodyweight and improve glucose metabolism in animal models of obesity. These polysaccharides can also help to increase the activity of certain white blood cells, which play a critical role in the body's immune response. For coronavirus, some in vitro studies have shown that G. lucidum polysaccharides and triterpenoids have the potential to inhibit coronavirus infection; however, these results have not been validated through clinical trials. Therefore, it would be premature to draw any definitive conclusions about the effectiveness of G. lucidum in preventing or treating coronavirus infections in humans.
RESUMO
Recent scientific studies have established a relationship between the consumption of phytochemicals such as carotenoids, polyphenols, isoprenoids, phytosterols, saponins, dietary fibers, polysaccharides, etc., with health benefits such as prevention of diabetes, obesity, cancer, cardiovascular diseases, etc. This has led to the popularization of phytochemicals. Nowadays, foods containing phytochemicals as a constituent (functional foods) and the concentrated form of phytochemicals (nutraceuticals) are used as a preventive measure or cure for many diseases. The health benefits of these phytochemicals depend on their purity and structural stability. The yield, purity, and structural stability of extracted phytochemicals depend on the matrix in which the phytochemical is present, the method of extraction, the solvent used, the temperature, and the time of extraction.
Assuntos
Compostos Fitoquímicos , Fitosteróis , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/química , Polifenóis/uso terapêutico , Polifenóis/química , Suplementos Nutricionais , Antioxidantes/uso terapêuticoRESUMO
In this study, UPLC-MS/MS was used to study the effects of smoking duration and temperature on the formation of heterocyclic amines (HAs) in smoke-processed meat patties. Four kinds of free HAsincluding F-7,8-DiMeIQx; F-MeAαC; F-Harman and F-Norharmanand six kinds of protein-bound HAsincluding B-AαC; B-7,8-DiMeIQx; B-Glu-p-1; B-MeAαC; B-Harman and B-Norharmanwere detected and quantified. Among the free HAs, we observed a 23-fold content increase (p < 0.05), from 0−4 h (at 0 h and 4 h they were 4.24 ng·g−1 and 98.33 ng·g−1, respectively), and the content of the free HAs decreased to 78.80 ng·g−1, at 5 h. At the same time, the free HAs content increased from 53.52 ng·g−1, at 50 °C, to 127.16 ng·g−1, at 60 °C, and then decreased continuously. The content of the free HAs was the highest at 60 °C. For the protein-bound HAs, their content was found to generally decrease with the increase in smoking duration and temperature. However, at 5 h, the content of protein-bound HAs slightly increased to 984.2 ng·g−1. Meanwhile, at 90 °C, it increased to 1643.53 ng·g−1. Additionally, a total of 16 volatile organic compounds (VOCs) were found in all of the meat samples, of which 10 VOCs (one acid, three aldehydes and seven phenols) were significantly related to the formation of free HAs. These findings showed that all the different types of HAs were produced under low-temperature processing, which provided scientific insights into the potential generation of HAs during meat smoking processes and could be used as a reference to minimize the risks of cancer related to the consumption of smoked meat products.
RESUMO
Although various inhibitors have been employed to react with phenylacetaldehyde to form adducts and thus interrupt the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), high concentrations of PhIP remain in the final system. It remains unknown whether other critical aldehyde or ketone intermediates are involved in the generation of PhIP, and scavenging these reactive carbonyls simultaneously may achieve higher inhibitory efficiency of PhIP. In this study, reactive carbonyls in a glucose/creatinine/phenylalanine model system were first identified by gas chromatography-mass spectrometry (GC-MS), and then the single and synergistic effects of nonprecursor amino acids (cysteine, methionine, proline, histidine, arginine, and leucine) on scavenging reactive carbonyls were investigated to find out promising combination partners. The obtained results showed that the concentrations of benzaldehyde and phenylacetaldehyde in the glucose/creatinine/phenylalanine model system reached 0.49 ± 0.01 and 6.22 ± 0.21 µg/mL, respectively. Heating these carbonyl compounds in the presence of creatinine resulted in the quantity of PhIP produced increasing linearly with the added quantity of benzaldehyde (r = 0.9733, P = 0.0002) and phenylacetaldehyde (r = 0.9746, P = 0.0002), indicating that both compounds are key intermediates for PhIP generation. Among the investigated amino acids, histidine produced the maximum inhibition of PhIP formation (78-99%) in the benzaldehyde/creatinine model system, and proline produced the maximum inhibition of PhIP formation (13-97%) in the phenylacetaldehyde/creatinine model system, where both compounds decreased PhIP formation in a dose-dependent manner. Histidine in combination with proline enhanced the inhibitory effect against PhIP formation at a low addition level, where the highest inhibitory efficiency was obtained using a 1:3 mass ratio of histidine to proline (2 mg/mL in total), reducing PhIP formation by 96%. These findings suggest that histidine-proline combinations can scavenge benzaldehyde and phenylacetaldehyde simultaneously, enhancing the suppression of PhIP formation.
Assuntos
Aminoácidos , Benzaldeídos , Acetaldeído/análogos & derivados , Aminoácidos/química , Benzaldeídos/farmacologia , Creatinina/química , Glucose , Histidina , Imidazóis , Fenilalanina/química , Prolina , PiridinasRESUMO
Worldwide aquaculture production is increasing, but with this increase comes quality and safety related problems. Hence, there is an urgent need to develop potent technologies to extend the shelf life of fish. Xanthan gum is commonly used in the food industry because of its high-water solubility, stability of its aqueous solutions in a wide pH range, and high viscosity. One of its modern food applications is its use as a gelling agent in edible coatings building. Therefore, in this study, the effect of xanthan coating containing various concentrations (0, 1, 2%; w/v) of ethanolic extract of propolis (EEP) on physicochemical, microbial, and sensory quality indices in mackerel fillets stored at 2 °C for 20 days was evaluated. The pH, peroxide value, K-value, TVB-N, TBARS, microbiological and sensory characteristics were determined every 5 days over the storage period (20 days). Samples treated with xanthan (XAN) coatings containing 1 and 2% of EEP were shown to have the highest level of physicochemical protection and maximum level of microbial inhibition (p < 0.05) compared to uncoated samples (control) over the storage period. Furthermore, the addition of EEP to XAN was more effective in notably preserving (p < 0.05) the taste and odor of coated samples compared to control.
RESUMO
In this study, the volatile compound profiles of gurum seed oil were determined using two methods: supercritical CO2 extraction (SFE) and the screw press process (SPP). For volatile compounds extraction and identification, headspace solid-phase micro-extraction (HS-SPME) and GC-MS were used, respectively. A total number of 56 volatile compounds were revealed and identified in oil extracted by SFE, while only 40 compounds were detected in extracted oil by SPP. Acids, aldehydes, esters, ketones, furans, and other components were present in the highest ratio in oil extracted by SFE. In contrast, alcohols and alkenes were found in the highest proportion in oil extracted by SPP. In this study, it was observed that SFE showed an increase in the amounts of volatile compounds and favorably impacted the aroma of gurum seed oil. The results reveal that different extraction methods significantly impact the volatile components of gurum seed oil, and this study can help evaluate the quality of the oil extracted from gurum seeds.