Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(2): 283-297, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043936

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to various motor and non-motor symptoms. Several cellular and molecular mechanisms such as alpha-synuclein (α-syn) accumulation, mitochondrial dysfunction, oxidative stress and neuroinflammation are involved in the pathogenesis of this disease. MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. They are typically about 21-25 nucleotides in length and are involved in the regulation of gene expression by binding to the messenger RNA (mRNA) molecules. miRNAs like miR-221 play important roles in various biological processes, including development, cell proliferation, differentiation and apoptosis. miR-221 promotes neuronal survival against oxidative stress and neurite outgrowth and neuronal differentiation. Additionally, the role of miR-221 in PD has been investigated in several studies. According to the results of these studies, (1) miR-221 protects PC12 cells against oxidative stress induced by 6-hydroxydopamine; (2) miR-221 prevents Bax/caspase-3 signalling activation by stopping Bim; (3) miR-221 has moderate predictive power for PD; (4) miR-221 directly targets PTEN, and PTEN over-expression eliminates the protective action of miR-221 on p-AKT expression in PC12 cells; and (5) miRNA-221 controls cell viability and apoptosis by manipulating the Akt signalling pathway in PD. This review study suggested that miR-221 has the potential to be used as a clinical biomarker for PD diagnosis and stage assignment.


Assuntos
MicroRNAs , Doença de Parkinson , Ratos , Animais , Humanos , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose , Neurônios Dopaminérgicos/metabolismo , Biomarcadores/metabolismo
2.
Biol Trace Elem Res ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015327

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a type of acute lymphoblastic leukemia from early T-cell progenitors. Interest grows in creating less toxic agents and therapies for chemo-resistant T-ALL cancer. Recently, elemental boron has special properties useful in the creation of new drugs. Studies have revealed the cytotoxic properties of boric acid (BA) on cancer, but not fully understood. We aimed to investigate the effect of BA on cell proliferation, apoptosis, and oxidative stress in the Jurkat cells. The effects of BA on cell viability were determined by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay for 24-48-72 h. The impact of BA on apoptosis was analyzed by acridine orange/ethidium bromide. Expression of apoptosis regulatory genes (Bcl-2, Bax, Caspase-3-8-9) and apoptotic miRNA (miR-21) was used by real-time quantitative polymerase chain reaction (RT-qPCR). The total oxidant status (TOS), total antioxidant status (TAS), and the oxidative stress index (OSI) value were calculated for oxidative stress. We determined the cytotoxic activity of BA on Jurkat cells by using XTT and defined the IC50 concentration (802.7 µg/mL) of BA. The findings clearly show that BA inhibited Jurkat cell proliferation dose-dependently. BA induced apoptosis through downregulated anti-apoptotic genes, and upregulated pro-apoptotic genes. Additionally, we found that BA significantly reduced the expression of miR-21 (p<0.001). Our findings demonstrated that different doses of BA increased TAS levels while decreasing TOS levels in Jurkat cells. Our study suggests that BA might be potential anti-cancer agent candidate in ALL via inhibition of cell proliferation, induced apoptosis, and reducing the amounts of anti-oxidants in cells.

3.
Mol Neurobiol ; 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996730

RESUMO

Krüppel-like factor 4 (KLF4), a zinc finger transcription factor, is found in different human tissues and shows diverse regulatory activities in a cell-dependent manner. In the brain, KLF4 controls various neurophysiological and neuropathological processes, and its contribution to various neurological diseases has been widely reported. Parkinson's disease (PD) is an age-related neurodegenerative disease that might have a connection with KLF4. In this review, we discussed the potential implication of KLF4 in fundamental molecular mechanisms of PD, including aberrant proteostasis, neuroinflammation, apoptosis, oxidative stress, and iron overload. The evidence collected herein sheds new light on KLF4-mediated pathways, which manipulation appears to be a promising therapeutic target for PD management. However, there is a gap in the knowledge on this topic, and extended research is required to understand the translational value of the KLF4-oriented therapeutical approach in PD.

4.
World J Stem Cells ; 15(7): 687-700, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37545757

RESUMO

Parkinson's disease (PD), characterized by loss of nigrostriatal dopaminergic neurons, is one of the most predominant neurodegenerative diseases affecting the elderly population worldwide. The concept of stem cell therapy in managing neurodegenerative diseases has evolved over the years and has recently rapidly progressed. Neural stem cells (NSCs) have a few key features, including self-renewal, proliferation, and multipotency, which make them a promising agent targeting neurodegeneration. It is generally agreed that challenges for NSC-based therapy are present at every stage of the transplantation process, including preoperative cell preparation and quality control, perioperative procedures, and postoperative graft preservation, adherence, and overall therapy success. In this review, we provided a comprehensive, careful, and critical discussion of experimental and clinical data alongside the pros and cons of NSC-based therapy in PD. Given the state-of-the-art accomplishments of stem cell therapy, gene therapy, and nanotechnology, we shed light on the perspective of complementing the advantages of each process by developing nano-stem cell therapy, which is currently a research hotspot. Although various obstacles and challenges remain, nano-stem cell therapy holds promise to cure PD, however, continuous improvement and development from the stage of laboratory experiments to the clinical application are necessary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA