Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202402892, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246096

RESUMO

Developing new methods to control the size and shape of the helical structures adopted by foldamers is highly important as the secondary structure displayed by these supramolecular scaffolds often dictates their activity and function. Herein, we report on a systematic study demonstrating that the helical pitch of ortho-azobenzene/2,6-pyridyldicarboamide foldamers can be readily controlled through the nature of the terminal functionality. Remarkably, simply through varying the end group of the foldamer, and without modifying any other structural features of the scaffold, the helical pitch can be over doubled in magnitude (from 3.4 Å to 7.3 Å). Additionally, crystallographic analysis of a library ten foldamers has identified general trends in the influence of a range of terminal functionalities, including carboxylbenzyl (Cbz), diphenylcarbamyl (N(Ph)2), ferrocene (Fc) and tert-butyloxycarbonyl (Boc), in controlling the folding behaviour of these supramolecular scaffolds. These studies could prove useful in the future development of functional foldamers which adopt specific sizes and shapes.

2.
Org Biomol Chem ; 20(38): 7587-7592, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36107007

RESUMO

We present a series of supramolecular self-associated amphiphiles, which spontaneously self-assemble into aggregated species. These aggregates are shown to absorb a variety of (polar) micropollutants from aqueous mixtures and as a result we determine the suitability for this technology to be developed further as aqueous environmental clean-up agents.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Água
3.
Chem Sci ; 12(40): 13273-13282, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34777745

RESUMO

While cancer now impacts the health and well-being of more of the human population than ever before, the exponential rise in antimicrobial resistant (AMR) bacterial infections means AMR is predicted to become one of the greatest future threats to human health. It is therefore vital that novel therapeutic strategies are developed that can be used in the treatment of both cancer and AMR infections. Whether the target of a therapeutic agent be inside the cell or in the cell membrane, it must either interact with or cross this phospholipid barrier to elicit the desired cellular effect. Here we summarise findings from published research into the phospholipid membrane composition of bacterial and cancer cell lines and biological samples from cancer patients. These data not only highlight key differences in the membrane composition of these biological samples, but also the methods used to elucidate and report the results of this analogous research between the microbial and cancer fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA