Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066433

RESUMO

Candida albicans, an opportunistic fungal pathogen, frequently colonizes immune-compromised patients and causes mild to severe systemic reactions. Only few antifungal drugs are currently in use for therapeutic treatment. However, evolution of a drug-resistant C. albicans fungal pathogen is of major concern in the treatment of patients, hence the clinical need for novel drug design and development. In this study, in vitro screening of novel putative pyrrolo[1,2-a]quinoline derivatives as the lead drug targets and in silico prediction of the binding potential of these lead molecules against C. albicans pathogenic proteins, such as secreted aspartic protease 3 (SAP3; 2H6T), surface protein ß-glucanase (3N9K) and sterol 14-alpha demethylase (5TZ1), were carried out by molecular docking analyses. Further, biological activity-based QSAR and theoretical pharmacokinetic analysis were analyzed. Here, in vitro screening of novel analogue derivatives as drug targets against C. albicans showed inhibitory potential in the concentration of 0.4 µg for BQ-06, 07 and 08, 0.8 µg for BQ-01, 03, and 05, 1.6 µg for BQ-04 and 12.5 µg for BQ-02 in comparison to the standard antifungal drug fluconazole in the concentration of 30 µg. Further, in silico analysis of BQ-01, 03, 05 and 07 analogues docked on chimeric 2H6T, 3N9K and 5TZ1 revealed that these analogues show potential binding affinity, which is different from the therapeutic antifungal drug fluconazole. In addition, these molecules possess good drug-like properties based on the determination of conceptual Density Functional Theory (DFT)-based descriptors, QSAR and pharmacokinetics. Thus, the study offers significant insight into employing pyrrolo[1,2-a]quinoline analogues as novel antifungal agents against C. albicans that warrants further investigation.


Assuntos
Antifúngicos/síntese química , Ácidos Carboxílicos/síntese química , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Antifúngicos/farmacocinética , Candida albicans , Ácidos Carboxílicos/farmacocinética , Química Farmacêutica/métodos , Desenho de Fármacos , Fluconazol/farmacologia , Ligação de Hidrogênio , Indolizinas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Quinolinas/síntese química , Quinolinas/farmacocinética , Termodinâmica
2.
Curr Comput Aided Drug Des ; 14(3): 246-252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29493460

RESUMO

BACKGROUND: Gefitinib (lressa) is the most prescribed drug, highly effective to treat nonsmall cell lung cancer; primarily it was considered that targeted therapy is a kinase inhibitor. The nonsmall cell lung cancer is caused by mutation in the Epithelial Growth Factor Receptor (EGFR) gene. Iressa works by blocking the EGFR protein that helps the cancer cell growth. EGFR protein has lead to the development of anticancer therapeutics directed against EGFR inhibitor including Gefitinib for non-small cell lung cancer. METHODS: To explore the interaction between Gefitinib and its derivatives with crystal structure of EGFR to understand the better molecular insights interaction strategies. Molecular modeling of ligands (Gefitinib and its derivatives) was carried out by Avogadro software till atomic angle stable confirmation was obtained. The partial charges for the ligands were assigned as per standard protocol for molecular docking. All docking simulations were performed with AutoDockVina. Virtual screening was carried out based on binding energy and hydrogen bonding affinity. Molecular dynamics (MD) and Simulation EGFR were done using GROMACS 5.1.1 software to explore the interaction stability in a cell. RESULTS: The stable conformation for EGFR protein trajectories were captured at various time intervals 0-20ns. Few compounds screen based on high affinity as the inhibitor for EGFR may inhibit the cell cycle signaling in non-small cell lung cancer. CONCLUSION: These result suggested a computer-aided screening approach of Gefitinib derivatives with regard to their binding to EGFR for identifying novel drugs for the treatment of non-small cell lung cancer.


Assuntos
Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Desenho Assistido por Computador , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Gefitinibe , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA