RESUMO
Many studies seeking to understand the success of biological invasions focus on species' escape from negative interactions, such as damage from herbivores, pathogens, or predators in their introduced range (enemy release). However, much less work has been done to assess the possibility that introduced species might shed mutualists such as pollinators, seed dispersers, and mycorrhizae when they are transported to a new range. We ran a cross-continental field study and found that plants were being visited by 2.6 times more potential pollinators with 1.8 times greater richness in their native range than in their introduced range. Understanding both the positive and negative consequences of introduction to a new range can help us predict, monitor, and manage future invasion events.
Assuntos
Espécies Introduzidas , Animais , Polinização , Micorrizas/fisiologia , Simbiose , Plantas , Dispersão de Sementes , EcossistemaRESUMO
Human activities have altered the species composition of assemblages through introductions and extinctions, but it remains unclear how those changes can affect the different facets of biodiversity. Here we assessed the impact of changes in species composition on taxonomic, functional, and phylogenetic diversity across 281 bird assemblages worldwide. To provide a more nuanced understanding of functional diversity, we distinguished morphological from life-history traits. We showed that shifts in species composition could trigger a global decline in avian biodiversity due to the high number of potential extinctions. Moreover, these extinctions were not random but unique in terms of function and phylogeny at the regional level. Our findings demonstrated that non-native species cannot compensate for these losses, as they are both morphologically and phylogenetically close to the native fauna. In the context of the ongoing biodiversity crisis, such alterations in the functional and phylogenetic structure of bird assemblages could heighten ecosystem vulnerability.
Assuntos
Ecossistema , Espécies em Perigo de Extinção , Animais , Humanos , Filogenia , Biodiversidade , AvesRESUMO
When a plant is introduced to a new ecosystem it may escape from some of its coevolved herbivores. Reduced herbivore damage, and the ability of introduced plants to allocate resources from defence to growth and reproduction can increase the success of introduced species. This mechanism is known as enemy release and is known to occur in some species and situations, but not in others. Understanding the conditions under which enemy release is most likely to occur is important, as this will help us to identify which species and habitats may be most at risk of invasion. We compared in situ measurements of herbivory on 16 plant species at 12 locations within their native European and introduced Australian ranges to quantify their level of enemy release and understand the relationship between enemy release and time, space and climate. Overall, plants experienced approximately seven times more herbivore damage in their native range than in their introduced range. We found no evidence that enemy release was related to time since introduction, introduced range size, temperature, precipitation, humidity or elevation. From here, we can explore whether traits, such as leaf defences or phylogenetic relatedness to neighbouring plants, are stronger indicators of enemy release across species.
Assuntos
Ecossistema , Plantas , Filogenia , Austrália , Herbivoria , Espécies IntroduzidasRESUMO
Ecological theory posits that temporal stability patterns in plant populations are associated with differences in species' ecological strategies. However, empirical evidence is lacking about which traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a worldwide collection of long-term permanent vegetation records (greater than 7000 plots from 78 datasets) from a large range of habitats which we combined with existing trait databases. We tested whether the observed inter-annual variability in species abundance (coefficient of variation) was related to multiple individual traits. We found that populations with greater leaf dry matter content and seed mass were more stable over time. Despite the variability explained by these traits being low, their effect was consistent across different datasets. Other traits played a significant, albeit weaker, role in species stability, and the inclusion of multi-variate axes or phylogeny did not substantially modify nor improve predictions. These results provide empirical evidence and highlight the relevance of specific ecological trade-offs, i.e. in different resource-use and dispersal strategies, for plant populations stability across multiple biomes. Further research is, however, necessary to integrate and evaluate the role of other specific traits, often not available in databases, and intraspecific trait variability in modulating species stability.
Assuntos
Ecossistema , Plantas , Filogenia , Sementes , Fenótipo , Folhas de PlantaRESUMO
Introduction: Traditional approaches to collecting large-scale biodiversity data pose huge logistical and technical challenges. We aimed to assess how a comparatively simple method based on sequencing environmental DNA (eDNA) characterises global variation in plant diversity and community composition compared with data derived from traditional plant inventory methods. Methods: We sequenced a short fragment (P6 loop) of the chloroplast trnL intron from from 325 globally distributed soil samples and compared estimates of diversity and composition with those derived from traditional sources based on empirical (GBIF) or extrapolated plant distribution and diversity data. Results: Large-scale plant diversity and community composition patterns revealed by sequencing eDNA were broadly in accordance with those derived from traditional sources. The success of the eDNA taxonomy assignment, and the overlap of taxon lists between eDNA and GBIF, was greatest at moderate to high latitudes of the northern hemisphere. On average, around half (mean: 51.5% SD 17.6) of local GBIF records were represented in eDNA databases at the species level, depending on the geographic region. Discussion: eDNA trnL gene sequencing data accurately represent global patterns in plant diversity and composition and thus can provide a basis for large-scale vegetation studies. Important experimental considerations for plant eDNA studies include using a sampling volume and design to maximise the number of taxa detected and optimising the sequencing depth. However, increasing the coverage of reference sequence databases would yield the most significant improvements in the accuracy of taxonomic assignments made using the P6 loop of the trnL region.
RESUMO
Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.
Assuntos
Ecossistema , Pradaria , Biomassa , Biodiversidade , Reprodutibilidade dos Testes , PlantasRESUMO
Our knowledge of microbial biogeography has advanced in recent years, yet we lack knowledge of the global diversity of some important functional groups. Here, we used environmental DNA from 327 globally collected soil samples to investigate the biodiversity patterns of nitrogen-fixing bacteria by focusing on the nifH gene but also amplifying the general prokaryotic 16S SSU region. Globally, N-fixing prokaryotic communities are driven mainly by climatic conditions, with most groups being positively correlated with stable hot or seasonally humid climates. Among soil parameters, pH, but also soil N content were most often shown to correlate with the diversity of N-fixer groups. However, specific groups of N-fixing prokaryotes show contrasting responses to the same variables, notably in Cyanobacteria that were negatively correlated with stable hot climates, and showed a U-shaped correlation with soil pH, contrary to other N-fixers. Also, the non-N-fixing prokaryotic community composition was differentially correlated with the diversity and abundance of N-fixer groups, showing the often-neglected impact of biotic interactions among bacteria.
RESUMO
Global change drivers (e.g. climate and land use) affect the species and functional traits observed in a local site but also its dark diversity-the set of species and traits locally suitable but absent. Dark diversity links regional and local scales and, over time, reveals taxa under expansion lags by depicting the potential biodiversity that remains suitable but is absent locally. Since global change effects on biodiversity are both spatially and temporally scale dependent, examining long-term temporal dynamics in observed and dark diversity would be relevant to assessing and foreseeing biodiversity change. Here, we used sedimentary pollen data to examine how both taxonomic and functional observed and dark diversity changed over the past 14 500 years in northern Europe. We found that taxonomic and functional observed and dark diversity increased over time, especially after the Late Glacial and during the Late Holocene. However, dark diversity dynamics revealed expansion lags related to species' functional characteristics (dispersal limitation and stress intolerance) and an extensive functional redundancy when compared to taxa in observed diversity. We highlight that assessing observed and dark diversity dynamics is a promising tool to examine biodiversity change across spatial scales, its possible causes, and functional consequences.
Assuntos
Características de História de Vida , Plantas , Biodiversidade , Pólen , Europa (Continente) , EcossistemaRESUMO
Plants and their environments engage in feedback loops that not only affect individuals, but also scale up to the ecosystem level. Community-level negative feedback facilitates local diversity, while the ability of plants to engineer ecosystem-wide conditions for their own benefit enhances local dominance. Here, we suggest that local and regional processes influencing diversity are inherently correlated: community-level negative feedback predominates among large species pools formed under historically common conditions; ecosystem-level positive feedback is most apparent in historically restricted habitats. Given enough time and space, evolutionary processes should lead to transitions between systems dominated by positive and negative feedbacks: species-poor systems should become richer due to diversification of dominants and adaptation of subordinates; however, new monodominants may emerge due to migration or new adaptations.
Assuntos
Ecossistema , Solo , Humanos , Retroalimentação , Biodiversidade , PlantasRESUMO
Classical theory identifies resource competition as the major structuring force of biotic communities and predicts that (i) levels of dominance and richness in communities are inversely related, (ii) narrow niches allow dense "packing" in niche space and thus promote diversity, and (iii) dominants are generalists with wide niches, such that locally abundant taxa also exhibit wide distributions. Current empirical support, however, is mixed. We tested these expectations using published data on arbuscular mycorrhizal (AM) fungal community composition worldwide. We recorded the expected negative relationship between dominance and richness and, to a degree, the positive association between local and global dominance. However, contrary to expectations, dominance was pronounced in communities where more specialists were present and, conversely, richness was higher in communities with more generalists. Thus, resource competition and niche packing appear to be of limited importance in AM fungal community assembly; rather, patterns of dominance and diversity seem more consistent with habitat filtering and stochastic processes.
Assuntos
Micobioma , Micorrizas , Ecossistema , Solo , Microbiologia do SoloRESUMO
Wetland soils are the greatest source of nitrous oxide (N2O), a critical greenhouse gas and ozone depleter released by microbes. Yet, microbial players and processes underlying the N2O emissions from wetland soils are poorly understood. Using in situ N2O measurements and by determining the structure and potential functional of microbial communities in 645 wetland soil samples globally, we examined the potential role of archaea, bacteria, and fungi in nitrogen (N) cycling and N2O emissions. We show that N2O emissions are higher in drained and warm wetland soils, and are correlated with functional diversity of microbes. We further provide evidence that despite their much lower abundance compared to bacteria, nitrifying archaeal abundance is a key factor explaining N2O emissions from wetland soils globally. Our data suggest that ongoing global warming and intensifying environmental change may boost archaeal nitrifiers, collectively transforming wetland soils to a greater source of N2O.
Assuntos
Gases de Efeito Estufa , Microbiota , Gases de Efeito Estufa/análise , Óxido Nitroso/análise , Solo/química , Microbiologia do Solo , Áreas AlagadasRESUMO
Arbuscular mycorrhizal (AM) fungi are a ubiquitous group of plant symbionts, yet processes underlying their global assembly - in particular the roles of dispersal limitation and historical drivers - remain poorly understood. Because earlier studies have reported niche conservatism in AM fungi, we hypothesized that variation in taxonomic community composition (i.e., unweighted by taxon relatedness) should resemble variation in phylogenetic community composition (i.e., weighted by taxon relatedness) which reflects ancestral adaptations to historical habitat gradients. Because of the presumed strong dispersal ability of AM fungi, we also anticipated that the large-scale structure of AM fungal communities would track environmental conditions without regional discontinuity. We used recently published AM fungal sequence data (small-subunit ribosomal RNA gene) from soil samples collected worldwide to reconstruct global patterns in taxonomic and phylogenetic community variation. The taxonomic structure of AM fungal communities was primarily driven by habitat conditions, with limited regional differentiation, and there were two well-supported clusters of communities - occurring in cold and warm conditions. Phylogenetic structure was driven by the same factors, though all relationships were markedly weaker. This suggests that niche conservatism with respect to habitat associations is weakly expressed in AM fungal communities. We conclude that the composition of AM fungal communities tracks major climatic and edaphic gradients, with the effects of dispersal limitation and historic factors considerably less apparent than those of climate and soil.
Assuntos
Micobioma , Micorrizas , Fungos/genética , Micorrizas/genética , Filogenia , Solo , Microbiologia do SoloRESUMO
Native biodiversity decline and non-native species spread are major features of the Anthropocene. Both processes can drive biotic homogenization by reducing trait and phylogenetic differences in species assemblages between regions, thus diminishing the regional distinctiveness of biotas and likely have negative impacts on key ecosystem functions. However, a global assessment of this phenomenon is lacking. Here, using a dataset of >200,000 plant species, we demonstrate widespread and temporal decreases in species and phylogenetic turnover across grain sizes and spatial extents. The extent of homogenization within major biomes is pronounced and is overwhelmingly explained by non-native species naturalizations. Asia and North America are major sources of non-native species; however, the species they export tend to be phylogenetically close to recipient floras. Australia, the Pacific and Europe, in contrast, contribute fewer species to the global pool of non-natives, but represent a disproportionate amount of phylogenetic diversity. The timeline of most naturalisations coincides with widespread human migration within the last ~500 years, and demonstrates the profound influence humans exert on regional biotas beyond changes in species richness.
Assuntos
Algoritmos , Biodiversidade , Bases de Dados Factuais , Modelos Teóricos , Filogenia , Plantas/classificação , África , Ásia , Austrália , Ecossistema , Europa (Continente) , Geografia , Atividades Humanas , Migração Humana , Humanos , América do Norte , Plantas/genéticaRESUMO
Plant traits determine how individual plants cope with heterogeneous environments. Despite large variability in individual traits, trait coordination and trade-offs1,2 result in some trait combinations being much more widespread than others, as revealed in the global spectrum of plant form and function (GSPFF3) and the root economics space (RES4) for aboveground and fine-root traits, respectively. Here we combine the traits that define both functional spaces. Our analysis confirms the major trends of the GSPFF and shows that the RES captures additional information. The four dimensions needed to explain the non-redundant information in the dataset can be summarized in an aboveground and a fine-root plane, corresponding to the GSPFF and the RES, respectively. Both planes display high levels of species aggregation, but the differentiation among growth forms, families and biomes is lower on the fine-root plane, which does not include any size-related trait, than on the aboveground plane. As a result, many species with similar fine-root syndromes display contrasting aboveground traits. This highlights the importance of including belowground organs to the GSPFF when exploring the interplay between different natural selection pressures and whole-plant trait integration.
Assuntos
Ecossistema , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/fisiologia , Plantas/classificação , Fenótipo , Desenvolvimento Vegetal , Análise de Componente PrincipalRESUMO
Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.
Assuntos
Máscaras , Plantago , Adaptação Fisiológica , Biomassa , FenótipoRESUMO
Automated image-based plant identification has experienced rapid development and has been already used in research and nature management. However, there is a need for extensive studies on how accurately automatic plant identification works and which characteristics of observations and study species influence the results. We investigated the accuracy of the Flora Incognita application, a research-based tool for automated plant image identification. Our study was conducted in Estonia, Northern Europe. Photos originated from the Estonian national curated biodiversity observations database, originally without the intention to use them for automated identification (1496 photos, 542 species) were examined. Flora Incognita was also directly tested in field conditions in various habitats, taking images of plant organs as guided by the application (998 observations, 1703 photos, 280 species). Identification accuracy was compared among species characteristics: plant family, growth forms and life forms, habitat type and regional frequency. We also analysed image characteristics (plant organs, background, number of species in focus), and the number of training images that were available for particular species to develop the automated identification algorithm. From database images 79.6 % of species were correctly identified by Flora Incognita; in the field conditions species identification accuracy reached 85.3 %. Overall, the correct genus was found for 89 % and the correct plant family for 95 % of the species. Accuracy varied among different plant families, life forms and growth forms. Rare and common species and species from different habitats were identified with equal accuracy. Images with reproductive organs or with only the target species in focus were identified with greater success. The number of training images per species was positively correlated with the identification success. Even though a high accuracy has been already achieved for Flora Incognita, allowing its usage for research and practices, our results can guide further improvements of this application and automated plant identification in general.
RESUMO
Although species with larger body size and slow pace of life have a higher risk of extinction at a global scale, it is unclear whether this global trend will be consistent across biogeographic realms. Here we measure the functional diversity of terrestrial and freshwater vertebrates in the six terrestrial biogeographic realms and predict their future changes through scenarios mimicking a gradient of extinction risk of threatened species. We show vastly different effects of extinctions on functional diversity between taxonomic groups and realms, ranging from almost no decline to deep functional losses. The Indo-Malay and Palearctic realms are particularly inclined to experience a drastic loss of functional diversity reaching 29 and 31%, respectively. Birds, mammals, and reptiles regionally display a consistent functional diversity loss, while the projected losses of amphibians and freshwater fishes differ across realms. More efficient global conservation policies should consider marked regional losses of functional diversity across the world.