Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Nat Prod ; 87(2): 315-321, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262446

RESUMO

Trichothecenes (TCNs) are a large group of tricyclic sesquiterpenoid mycotoxins that have intriguing structural features and remarkable biological activities. Herein, we focused on three TCNs (anguidine, verrucarin A, and verrucarol) and their ability to target both the blood and liver stages of Plasmodium species, the parasite responsible for malaria. Anguidine and verrucarin A were found to be highly effective against the blood and liver stages of malaria, while verrucarol had no effect at the highest concentration tested. However, these compounds were also found to be cytotoxic and, thus, not selective, making them unsuitable for drug development. Nonetheless, they could be useful as chemical probes for protein synthesis inhibitors due to their direct impact on parasite synthesis processes.


Assuntos
Antimaláricos , Malária , Plasmodium , Tricotecenos , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Tricotecenos/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Fígado , Plasmodium falciparum
2.
Front Microbiol ; 13: 976606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212849

RESUMO

Plasmodium vivax, one species of parasite causing human malaria, forms a dormant liver stage, termed the hypnozoite, which activate weeks, months or years after the primary infection, causing relapse episodes. Relapses significantly contribute to the vivax malaria burden and are only killed with drugs of the 8-aminoquinoline class, which are contraindicated in many vulnerable populations. Development of new therapies targeting hypnozoites is hindered, in part, by the lack of robust methods to continuously culture and characterize this parasite. As a result, the determinants of relapse periodicity and the molecular processes that drive hypnozoite formation, persistence, and activation are largely unknown. While previous reports have described vastly different liver-stage growth metrics attributable to which hepatocyte donor lot is used to initiate culture, a comprehensive assessment of how different P. vivax patient isolates behave in the same lots at the same time is logistically challenging. Using our primary human hepatocyte-based P. vivax liver-stage culture platform, we aimed to simultaneously test the effects of how hepatocyte donor lot and P. vivax patient isolate influence the fate of sporozoites and growth of liver schizonts. We found that, while environmental factors such as hepatocyte donor lot can modulate hypnozoite formation rate, the P. vivax case is also an important determinant of the proportion of hypnozoites observed in culture. In addition, we found schizont growth to be mostly influenced by hepatocyte donor lot. These results suggest that, while host hepatocytes harbor characteristics making them more- or less-supportive of a quiescent versus growing intracellular parasite, sporozoite fating toward hypnozoites is isolate-specific. Future studies involving these host-parasite interactions, including characterization of individual P. vivax strains, should consider the impact of culture conditions on hypnozoite formation, in order to better understand this important part of the parasite's lifecycle.

3.
Sci Rep ; 11(1): 19905, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620901

RESUMO

Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.


Assuntos
Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Fígado/parasitologia , Malária Vivax/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium vivax/efeitos dos fármacos , Aminoquinolinas/química , Aminoquinolinas/uso terapêutico , Antimaláricos/química , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Sinergismo Farmacológico , Humanos , Estágios do Ciclo de Vida , Malária Vivax/tratamento farmacológico , Estrutura Molecular , Testes de Sensibilidade Parasitária/métodos , Plasmodium vivax/crescimento & desenvolvimento , Curva ROC , Fatores de Tempo
4.
Cell Chem Biol ; 27(6): 719-727.e5, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32330444

RESUMO

Plasmodium vivax infects hepatocytes to form schizonts that cause blood infection, or dormant hypnozoites that can persist for months in the liver before leading to relapsing blood infections. The molecular processes that drive P. vivax schizont and hypnozoite survival remain largely unknown, but they likely involve a rich network of host-pathogen interactions, including those occurring at the host-parasite interface, the parasitophorous vacuole membrane (PVM). Using a recently developed P. vivax liver-stage model system we demonstrate that host aquaporin-3 (AQP3) localizes to the PVM of schizonts and hypnozoites within 5 days after invasion. This recruitment is also observed in P. vivax-infected reticulocytes. Chemical treatment with the AQP3 inhibitor auphen reduces P. vivax liver hypnozoite and schizont burden, and inhibits P. vivax asexual blood-stage growth. These findings reveal a role for AQP3 in P. vivax liver and blood stages and suggest that the protein may be targeted for therapeutic treatment.


Assuntos
Aquaporina 3/metabolismo , Fígado/metabolismo , Malária Vivax/metabolismo , Plasmodium vivax/metabolismo , Células Cultivadas , Humanos , Fígado/efeitos dos fármacos , Fígado/parasitologia , Malária Vivax/tratamento farmacológico , Malária Vivax/parasitologia , Plasmodium vivax/isolamento & purificação
5.
PLoS Negl Trop Dis ; 10(2): e0004427, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26867025

RESUMO

The effects of biodiversity on the transmission of infectious diseases now stand as a cornerstone of many public health policies. The upper Amazonia and Guyana shield are hot-spots of biodiversity that offer genuine opportunities to explore the relationship between the risk of transmission of Chagas disease and the diversity of its triatomine vectors. Over 730 triatomines were light-trapped in four geomorphological landscapes shaping French-Guiana, and we determined their taxonomic status and infection by Trypanosoma cruzi. We used a model selection approach to unravel the spatial and temporal variations in species abundance, diversity and infection. The vector community in French-Guiana is typically made of one key species (Panstrongylus geniculatus) that is more abundant than three secondary species combined (Rhodnius pictipes, Panstrongylus lignarius and Eratyrus mucronatus), and four other species that complete the assemblage. Although the overall abundance of adult triatomines does not vary across French-Guiana, their diversity increases along a coastal-inland gradient. These variations unravelled a non-monotonic relationship between vector biodiversity and the risk of transmission of Chagas disease, so that intermediate biodiversity levels are associated with the lowest risks. We also observed biannual variations in triatomine abundance, representing the first report of a biannual pattern in the risk of Chagas disease transmission. Those variations were highly and negatively correlated with the average monthly rainfall. We discuss the implications of these patterns for the transmission of T. cruzi by assemblages of triatomine species, and for the dual challenge of controlling Amazonian vector communities that are made of both highly diverse and mostly intrusive species.


Assuntos
Biodiversidade , Doença de Chagas/transmissão , Insetos Vetores/fisiologia , Triatominae/fisiologia , Animais , Doença de Chagas/epidemiologia , Feminino , Guiana Francesa/epidemiologia , Humanos , Insetos Vetores/classificação , Insetos Vetores/genética , Masculino , Estações do Ano , Triatominae/classificação , Triatominae/genética
6.
J Mol Diagn ; 17(5): 605-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26320872

RESUMO

An international study was performed by 26 experienced PCR laboratories from 14 countries to assess the performance of duplex quantitative real-time PCR (qPCR) strategies on the basis of TaqMan probes for detection and quantification of parasitic loads in peripheral blood samples from Chagas disease patients. Two methods were studied: Satellite DNA (SatDNA) qPCR and kinetoplastid DNA (kDNA) qPCR. Both methods included an internal amplification control. Reportable range, analytical sensitivity, limits of detection and quantification, and precision were estimated according to international guidelines. In addition, inclusivity and exclusivity were estimated with DNA from stocks representing the different Trypanosoma cruzi discrete typing units and Trypanosoma rangeli and Leishmania spp. Both methods were challenged against 156 blood samples provided by the participant laboratories, including samples from acute and chronic patients with varied clinical findings, infected by oral route or vectorial transmission. kDNA qPCR showed better analytical sensitivity than SatDNA qPCR with limits of detection of 0.23 and 0.70 parasite equivalents/mL, respectively. Analyses of clinical samples revealed a high concordance in terms of sensitivity and parasitic loads determined by both SatDNA and kDNA qPCRs. This effort is a major step toward international validation of qPCR methods for the quantification of T. cruzi DNA in human blood samples, aiming to provide an accurate surrogate biomarker for diagnosis and treatment monitoring for patients with Chagas disease.


Assuntos
Doença de Chagas/sangue , DNA de Protozoário/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Trypanosoma cruzi/genética , Doença de Chagas/diagnóstico , Doença de Chagas/genética , Doença de Chagas/parasitologia , DNA de Protozoário/isolamento & purificação , Humanos , Cooperação Internacional , Ensaio de Proficiência Laboratorial , Tipagem Molecular , Parasitemia/sangue , Parasitemia/diagnóstico , Parasitemia/genética , Sensibilidade e Especificidade , Trypanosoma cruzi/isolamento & purificação
7.
PLoS Negl Trop Dis ; 9(5): e0003765, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25993316

RESUMO

BACKGROUND: Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). METHODS/PRINCIPAL FINDINGS: The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. CONCLUSIONS/SIGNIFICANCE: Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.


Assuntos
Doença de Chagas/diagnóstico , Tipagem Molecular/métodos , Trypanosoma cruzi/classificação , Trypanosoma cruzi/genética , Adolescente , Adulto , Bioensaio/métodos , Doença de Chagas/genética , Doença de Chagas/parasitologia , Criança , Pré-Escolar , Coinfecção , Feminino , Variação Genética/genética , Genótipo , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade
8.
Gene ; 552(1): 184-94, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25240790

RESUMO

The complete mitochondrial genome of the assassin bug Brontostoma colossus (Distant, 1902) (Heteroptera: Reduviidae) has been sequenced using a genome-skimming approach on an Illumina Hiseq 2000 platform. Fifty-four additional heteropteran mitogenomes, including five assassin bug species, were retrieved to allow for comparisons and phylogenetic analyses. The mitochondrial genome of B. colossus was determined to be 16,625 bp long, and consists of 13 protein-coding genes (PCGs), 23 transfer-RNA genes (tRNAs), two ribosomal-RNA genes (rRNAs), and one control region. The nucleotide composition is biased toward adenine and thymine (A+T=73.4%). Overall, architecture, nucleotide composition and genome asymmetry are similar among all available assassin bug mitogenomes. All PCGs have usual start-codons (Met and Ile). Three T and two TA incomplete termination codons were identified adjacent to tRNAs, which was consistent with the punctuation model for primary transcripts processing followed by 3' polyadenylation of mature mRNA. All tRNAs exhibit the classic clover-leaf secondary structure except for tRNASer(AGN) in which the DHU arm forms a simple loop. Two notable features are present in the B. colossus mitogenome: (i) a 131 bp duplicated unit including the complete tRNAArg gene, resulting in 23 potentially functional tRNAs in total, and (ii) a 857 bp duplicated region comprising 277 bp of the srRNA gene and 580 bp of the control region. A phylogenetic analysis based on 55 true bug mitogenomes confirmed that B. colossus belongs to Reduviidae, but contradicted a widely accepted hypothesis. This highlights the limits of phylogenetic analyses based on mitochondrial data only.


Assuntos
Genoma Mitocondrial/genética , Heterópteros/genética , Reduviidae/genética , Animais , Sequência de Bases , Códon de Iniciação/genética , Códon de Terminação/genética , Genoma de Inseto/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genética
9.
Antimicrob Agents Chemother ; 56(3): 1382-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22232280

RESUMO

Analysis of the evolution of drug target genes under changing drug policy is needed to assist monitoring of Plasmodium falciparum drug resistance in the field. Here we genotype Pfcrt and Pfdmr1 of 700 isolates collected in French Guiana from 2000 (5 years after withdrawal of chloroquine) to 2008, i.e., the period when the artemether-lumefantrine combination was progressively introduced and mefloquine was abandoned. Gene sequencing showed fixation of the 7G8-type Pfcrt SMVNT resistance haplotype and near fixation of the NYCDY Pfdmr1 haplotype. Pfdmr1 gene copy number correlated with 50% inhibitory concentrations of mefloquine and halofantrine (r = 0.64 and 0.47, respectively, n = 547); its temporal changes paralleled changes in in vitro mefloquine susceptibility. However, the molecular parameters studied did not account for the regained in vitro susceptibility to chloroquine and showed a poor correlation with susceptibility to artemether, lumefantrine, or quinine. Identification of novel markers of resistance to these antimalarials is needed in this South American area.


Assuntos
Aminoquinolinas/uso terapêutico , Antimaláricos/uso terapêutico , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Combinação Arteméter e Lumefantrina , Artemisininas/uso terapêutico , Cloroquina/administração & dosagem , Cloroquina/uso terapêutico , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Evolução Molecular , Fluorenos/uso terapêutico , Guiana Francesa/epidemiologia , Dosagem de Genes , Haplótipos , Humanos , Concentração Inibidora 50 , Estudos Longitudinais , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Mefloquina/uso terapêutico , Testes de Sensibilidade Parasitária , Fenantrenos/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Guias de Prática Clínica como Assunto , Quinina/administração & dosagem , Quinina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA