Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Transl Sci ; 16(10): 1779-1790, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639334

RESUMO

Green tea is a popular beverage worldwide. The abundant green tea catechin (-)-epigallocatechin gallate (EGCG) is a potent in vitro inhibitor of intestinal UDP-glucuronosyltransferase (UGT) activity (Ki ~2 µM). Co-consuming green tea with intestinal UGT drug substrates, including raloxifene, could increase systemic drug exposure. The effects of a well-characterized green tea on the pharmacokinetics of raloxifene, raloxifene 4'-glucuronide, and raloxifene 6-glucuronide were evaluated in 16 healthy adults via a three-arm crossover, fixed-sequence study. Raloxifene (60 mg) was administered orally with water (baseline), with green tea for 1 day (acute), and on the fifth day after daily green tea administration for 4 days (chronic). Unexpectedly, green tea decreased the geometric mean green tea/baseline raloxifene AUC0-96h ratio to ~0.60 after both acute and chronic administration, which is below the predefined no-effect range (0.75-1.33). Lack of change in terminal half-life and glucuronide-to-raloxifene ratios indicated the predominant mechanism was not inhibition of intestinal UGT. One potential mechanism includes inhibition of intestinal transport. Using established transfected cell systems, a green tea extract normalized to EGCG inhibited 10 of 16 transporters tested (IC50 , 0.37-12 µM). Another potential mechanism, interruption by green tea of gut microbe-mediated raloxifene reabsorption, prompted a follow-up exploratory clinical study to evaluate the potential for a green tea-gut microbiota-drug interaction. No clear mechanisms were identified. Overall, results highlight that improvements in current models and methods used to predict UGT-mediated drug interactions are needed. Informing patients about the risk of co-consuming green tea with raloxifene may be considered.


Assuntos
Catequina , Chá , Adulto , Humanos , Catequina/farmacologia , Interações Medicamentosas , Glucuronídeos , Cloridrato de Raloxifeno/farmacologia , Chá/química , Estudos Cross-Over
2.
Methods Mol Biol ; 1307: 141-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24482125

RESUMO

Measurement of changes in intracellular calcium concentration is one of the most common and useful tools for studying signal transduction pathways or cellular responses in basic research and drug screening purposes as well. Increasing number of such applications using human pluripotent stem cells and their derivatives requires development of calcium signal measurements for this special cell type. Here we describe a modified protocol for analysis of calcium signaling events in human embryonic stem cells, which can be used for other pluripotent cell types (such as iPSC) or their differentiated offspring as well.


Assuntos
Bioquímica/métodos , Sinalização do Cálcio , Células-Tronco Embrionárias Humanas/metabolismo , Espaço Intracelular/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Estatística como Assunto
3.
Tissue Eng Part C Methods ; 21(1): 35-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24734786

RESUMO

Cardiac progenitor cells (CPCs) are committed to the cardiac lineage but retain their proliferative capacity before becoming quiescent mature cardiomyocytes (CMs). In medical therapy and research, the use of human pluripotent stem cell-derived CPCs would have several advantages compared with mature CMs, as the progenitors show better engraftment into existing heart tissues, and provide unique potential for cardiovascular developmental as well as for pharmacological studies. Here, we demonstrate that the CAG promoter-driven enhanced green fluorescence protein (EGFP) reporter system enables the identification and isolation of embryonic stem cell-derived CPCs. Tracing of CPCs during differentiation confirmed up-regulation of surface markers, previously described to identify cardiac precursors and early CMs. Isolated CPCs express cardiac lineage-specific transcripts, still have proliferating capacity, and can be re-aggregated into embryoid body-like structures (CAG-EGFP(high) rEBs). Expression of troponin T and NKX2.5 mRNA is up-regulated in long-term cultured CAG-EGFP(high) rEBs, in which more than 90% of the cells become Troponin I positive mature CMs. Moreover, about one third of the CAG-EGFP(high) rEBs show spontaneous contractions. The method described here provides a powerful tool to generate expandable cultures of pure human CPCs that can be used for exploring early markers of the cardiac lineage, as well as for drug screening or tissue engineering applications.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Proteínas de Fluorescência Verde/metabolismo , Miócitos Cardíacos/citologia , Especificidade de Órgãos , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Galinhas , Corpos Embrioides/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Coelhos
4.
Cytometry B Clin Cytom ; 86(5): 299-310, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24729538

RESUMO

BACKGROUND: ATP-binding cassette (ABC) transporters have key roles in various physiological functions as well as providing chemical defense and stress tolerance in human tissues. In this study, we have examined the expression pattern of all ABC proteins in pluripotent human embryonic stem cells (hESCs) and in their differentiated progenies. We paid special attention to the cellular expression and localization of multidrug transporter ABC proteins. METHODS: Stem cell differentiation was carried out without chemical induction or cell sorting, and specialized cell types were separated mechanically. Cellular features regarding pluripotency and tissue identity, as well as ABC transporter expression were studied by flow cytomtery, immuno-microscopy, and qPCR-based low-density arrays. RESULTS: Pluripotent hESCs and differentiated cell types (cardiomyocytes, neuronal cells, and mesenchymal stem cells) were distinguished by morphology, immunostaining markers, and selected mRNA expression patterns. We found that the mRNA expression levels of the 48 human ABC proteins also clearly distinguished the pluripotent and the respective differentiated cell types. When multidrug and lipid transporter ABC protein expression was examined by using well characterized specific antibodies by flow cytometry and confocal microscopy, the protein expression data corresponded well to the mRNA expression results. Moreover, the cellular localization of these important human ABC transporter proteins could be established in the pluripotent and differentiated hESC derived samples. CONCLUSIONS: These studies provide valuable information regarding ABC protein expression in human stem cells and their differentiated offspring. The results may also help to obtain further information concerning the specialized cellular functions of selected ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia Confocal , Miócitos Cardíacos/citologia , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , RNA Mensageiro/biossíntese
5.
Cell Signal ; 25(4): 752-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23305950

RESUMO

Intracellular calcium signaling pathways play a major role in cellular responses such as proliferation, differentiation and apoptosis. Human embryonic stem cells (hESC) provide new possibilities to explore the development and differentiation of various cell types of the human body. Intracellular calcium responses to various ligands and the calcium signaling pathways, however, have not been thoroughly studied in embryonic stem cells and in their differentiated progenies. In our previous work we demonstrated that the use of the fluorescent calcium indicator Fluo-4 with confocal microscopy allows sensitive and reliable measurements of calcium modulation in human embryonic stem cells and stem-cell derived cardiomyocytes. Here we developed a human embryonic stem cell line stably expressing a genetically encoded Ca(2+) indicator (GCaMP2) using a transposon-based gene delivery system. We found that the differentiation properties were fully preserved in the GCaMP2-expressing hESC lines and Ca imaging could be performed without the need of toxic dye-loading of the cells. In undifferentiated hES cells the calcium signals induced by various ligands, ATP, LPA, trypsin or angiotensin II were comparable to those in Fluo-4 loaded cells. In accordance with previous findings, no calcium signal was evoked by thrombin, histamine or GABA. Cardiomyocyte colonies differentiated from hES-GCaMP2 cells could be recognized by spontaneous contractions and Ca(2+) oscillations. GCaMP2-expressing neural cells were identified based on their morphological and immuno-staining properties and Ca signals were characterized on those cells. Characteristics of both the spontaneous and ligand-induced Ca(2+) signals, as well as their pharmacological modification could be successfully examined in these model cells by fluorescence imaging.


Assuntos
Cálcio/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Compostos de Anilina/química , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/citologia , Histamina/farmacologia , Humanos , Microscopia Confocal , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Trombina/farmacologia , Xantenos/química , Ácido gama-Aminobutírico/farmacologia
6.
Eur Biophys J ; 42(2-3): 169-79, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22851001

RESUMO

ABCG2 is a plasma membrane multidrug transporter with an established role in the cancer drug-resistance phenotype. This protein is expressed in a variety of tissues, including several types of stem cell. Although ABCG2 is not essential for life, knock-out mice were found to be hypersensitive to xenobiotics and had reduced levels of the side population of hematopoietic stem cells. Previously we have shown that ABCG2 is present in human embryonic stem cell (hESC) lines, with a heterogeneous expression pattern. In this study we examined this heterogeneity, and investigated whether it is related to stress responses in hESCs. We did not find any difference between expression of pluripotency markers in ABCG2-positive and negative hESCs; however, ABCG2-expressing cells had a higher growth rate after cell separation. We found that some harmful conditions (physical stress, drugs, and UV light exposure) are tolerated much better in the presence of ABCG2 protein. This property can be explained by the transporter function which eliminates potential toxic metabolites accumulated during stress conditions. In contrast, mild oxidative stress in hESCs caused rapid internalization of ABCG2, indicating that some environmental factors may induce removal of this transporter from the plasma membrane. On the basis of these results we suggest that a dynamic balance of ABCG2 expression at the population level has the advantage of enabling prompt response to changes in the cellular environment. Such actively maintained heterogeneity might be of evolutionary benefit in protecting special cell types, including pluripotent stem cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Estresse Oxidativo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Xenobióticos/farmacologia
7.
Per Med ; 8(3): 347-364, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-29783530

RESUMO

Human stem cells provide an important novel tool for generating in vitro pharmacological and toxicological test systems. In the development of new targeted therapies, as well as in critical safety issues, including hepato-, neuro- and cardio-toxicity, animal-based tests are mostly unsatisfactory, whereas the use of in vitro model systems is limited by the unavailability of relevant human tissues. Human embryonic stem cell lines may fill this gap and offer an advantage over primary cultures as well as tissue-derived (adult) stem cells. Human embryonic stem cells represent an unlimited source for the production of differentiated somatic progenies and allow various stable genetic manipulations. As a new opening in personalized medicine test systems, the generation of induced pluripotent stem cell lines and their derivatives can provide patient- and disease-specific cellular assays for drug development and safety assessments. This article reviews promising human stem cell applications in pharmacological and toxicological screenings, focusing on the implications for personalized medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA