Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 8(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35448628

RESUMO

Introns are usually non-coding sequences interrupting open reading frames in pre-mRNAs [D1,2]. Stwintrons are nested spliceosomal introns, where an internal intron splits a second donor sequence into two consecutive splicing reactions leading to mature mRNA. In Hypoxylon sp. CO27-5, 36 highly sequence-similar [D1,2] stwintrons are extant (sister stwintrons). An additional 81 [D1,2] sequence-unrelated stwintrons are described here. Most of them are located at conserved gene positions rooted deep in the Hypoxylaceae. Absence of exonic sequence bias at the exon-stwintron junctions and a very similar phase distribution were noted for both groups. The presence of an underlying sequence symmetry in all 117 stwintrons was striking. This symmetry, more pronounced near the termini of most of the full-length sister stwintrons, may lead to a secondary structure that brings into close proximity the most distal splice sites, the donor of the internal and the acceptor of the external intron. The Hypoxylon stwintrons were overwhelmingly excised by consecutive splicing reactions precisely removing the whole intervening sequence, whereas one excision involving the distal splice sites led to a frameshift. Alternative (mis)splicing took place for both sister and uniquely occurring stwintrons. The extraordinary symmetry of the sister stwintrons thus seems dispensable for the infrequent, direct utilisation of the distal splice sites.

2.
J Fungi (Basel) ; 7(9)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34575748

RESUMO

Spliceosomal introns are pervasive in eukaryotes. Intron gains and losses have occurred throughout evolution, but the origin of new introns is unclear. Stwintrons are complex intervening sequences where one of the sequence elements (5'-donor, lariat branch point element or 3'-acceptor) necessary for excision of a U2 intron (external intron) is itself interrupted by a second (internal) U2 intron. In Hypoxylaceae, a family of endophytic fungi, we uncovered scores of donor-disrupted stwintrons with striking sequence similarity among themselves and also with canonical introns. Intron-exon structure comparisons suggest that these stwintrons have proliferated within diverging taxa but also give rise to proliferating canonical introns in some genomes. The proliferated (stw)introns have integrated seamlessly at novel gene positions. The recently proliferated (stw)introns appear to originate from a conserved ancestral stwintron characterised by terminal inverted repeats (45-55 nucleotides), a highly symmetrical structure that may allow the formation of a double-stranded intron RNA molecule. No short tandem duplications flank the putatively inserted intervening sequences, which excludes a DNA transposition-based mechanism of proliferation. It is tempting to suggest that this highly symmetrical structure may have a role in intron proliferation by (an)other mechanism(s).

3.
Sci Rep ; 10(1): 6022, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265493

RESUMO

In primary transcripts of eukaryotic nuclear genes, coding sequences are often interrupted by U2-type introns. Such intervening sequences can constitute complex introns excised by consecutive splicing reactions. The origin of spliceosomal introns is a vexing problem. Sequence variation existent across fungal taxa provides means to study their structure and evolution. In one class of complex introns called [D] stwintrons, an (internal) U2 intron is nested within the 5'-donor element of another (external) U2 intron. In the gene for a reticulon-like protein in species of the ascomycete yeast genus Lipomyces, the most 5' terminal intron position is occupied by one of three complex intervening sequences consistent of differently nested U2 intron units, as demonstrated in L. lipofer, L. suomiensis, and L. starkeyi. In L. starkeyi, the donor elements of the constituent introns are abutting and the complex intervening sequence can be excised alternatively either with one standard splicing reaction or, as a [D] stwintron, by two consecutive reactions. Our work suggests how [D] stwintrons could emerge by the appearance of new functional splice sites within an extant intron. The stepwise stwintronisation mechanism may involve duplication of the functional intron donor element of the ancestor intron.


Assuntos
Íntrons , Lipomyces/genética , Evolução Molecular , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA