Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 195: 114967, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277266

RESUMO

Dietary advanced glycation end-products (dAGEs) accumulate in organs and are thought to initiate chronic low-grade inflammation (CLGI), induce glycoxidative stress, drive immunosenescence, and influence gut microbiota. Part of the toxicological interest in glycation products such as dietary carboxymethyl-lysine (dCML) relies on their interaction with receptor for advanced glycation end-products (RAGE). It remains uncertain whether early or lifelong exposure to dAGEs contributes physiological changes and whether such effects are reversible or permanent. Our objective was to examine the physiological changes in Wild-Type (WT) and RAGE KO mice that were fed either a standard diet (STD - 20.8 ± 5.1 µg dCML/g) or a diet enriched with dCML (255.2 ± 44.5 µg dCML/g) from the perinatal period for up to 70 weeks. Additionally, an early age (6 weeks) diet switch (dCML→STD) was explored to determine whether potential harmful effects of dCML could be reversed. Previous dCML accumulation patterns described by our group were confirmed here, with significant RAGE-independent accumulation of dCML in kidneys, ileum and colon over the 70-week dietary intervention (respectively 3-fold, 17-fold and 20-fold increases compared with controls). Diet switching returned tissue dCML concentrations to their baseline levels. The dCML-enriched diet had no significative effect on endogenous glycation, inflammation, oxidative stress or senescence parameters. The relative expression of TNFα, VCAM1, IL6, and P16 genes were all upregulated (∼2-fold) in an age-dependent manner, most notably in the kidneys of WT animals. RAGE knockout seemed protective in this regard, diminishing age-related renal expression of TNFα. Significant increases in TNFα expression were detectable in the intestinal tract of the Switch group (∼2-fold), suggesting a higher sensitivity to inflammation perhaps related to the timing of the diet change. Minor fluctuations were observed at family level within the caecal microbiota, including Eggerthellaceae, Anaerovoracaceae and Marinifilaceae communities, indicating slight changes in composition. Despite chronic dCML consumption resulting in higher free CML levels in tissues, there were no substantial increases in parameters related to inflammageing. Age was a more important factor in inflammation status, notably in the kidneys, while the early-life dietary switch may have influenced intestinal susceptibility to inflammation. This study affirms the therapeutic potential of RAGE modulation and corroborates evidence for the disruptive effect of dietary changes occurring too early in life. Future research should prioritize the potential influence of dAGEs on disease aetiology and development, notably any exacerbating effects they may have upon existing health conditions.


Assuntos
Microbioma Gastrointestinal , Produtos Finais de Glicação Avançada , Inflamação , Lisina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada , Animais , Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Inflamação/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Camundongos , Dieta , Masculino , Feminino , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética
2.
J Phys Chem A ; 114(9): 3147-56, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19928770

RESUMO

Photofragmentation of protonated dipeptides by 263 nm photons is investigated with an experimental technique based on the detection in coincidence of the ionic and neutral fragments. With this method, it is possible to determine whether the fragmentation takes place in one or several steps. The timing of these steps can also be evaluated. The interpretation of the various fragmentation pathways is tentatively developed along the same line as that previously proposed for tryptophan. The fragmentation can be explained by two types of mechanisms: internal conversions and direct fragmentations triggered by the migration of the photoactive electron on positive charged sites or on oxygen sites.


Assuntos
Dipeptídeos/química , Fotólise/efeitos da radiação , Prótons , Raios Ultravioleta , Dipeptídeos/efeitos da radiação , Estrutura Molecular
3.
J Chem Phys ; 128(16): 164302, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18447434

RESUMO

Photoexcitation of protonated aromatic amino acids leads to C(alpha)[Single Bond]C(beta) bond breakage among other channels. There are two pathways for the C(alpha)[Single Bond]C(beta) bond breakage, one is a slow process (microseconds) that occurs after hydrogen loss from the electronically excited ion, whereas the other is a fast process (nanoseconds). In this paper, a comparative study of the fragmentation of four molecules shows that the presence of the carboxylic acid group is necessary for this fast fragmentation channel to occur. We suggest a mechanism based on light-induced electron transfer from the aromatic ring to the carboxylic acid, followed by a fast internal proton transfer from the ammonium group to the negatively charged carboxylic acid group. The ion formed is a biradical since the aromatic ring is ionized and the carbon of the COOH group has an unpaired electron. Breakage of the weak C(alpha)[Single Bond]C(beta) bond gives two even-electron fragments and is expected to quickly occur. The present experimental results together with the ab initio calculations support the interpretation previously proposed.


Assuntos
Aminoácidos Aromáticos/química , Carbono/química , Modelos Químicos , Modelos Moleculares , Fotoquímica/métodos , Aminoácidos Aromáticos/efeitos da radiação , Sítios de Ligação , Simulação por Computador , Luz , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA