Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 6(42): 27781-27790, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34722978

RESUMO

The ever-growing demand for novel, cheaper, and more effective drugs has put nanomedicine and targeted drug delivery to the forefront of scientific innovation. Owing to its porous three-dimensional (3D)-nanostructure and properties, the biogenic calcite from wasted blue crab shells is employed in the present work as a new drug carrier for 5-fluorouracil (5-FU), a drug widely used in cancer therapy. The drug solution has been loaded in the porous nanoarchitecture of the powdered biogenic material and further pelleted in tablets with a 5-FU concentration of 1.748 mg/g. Their structural and morphological properties were characterized using Raman, X-ray diffraction, and scanning electron microscopy. Confocal micro-Raman spectra of tablet surface showed a typical signal of biogenic carbonate with preserved carotenoids and carotenoproteins found in the native waste shell, while the drug Raman signal was absent, indicating its adsorption in the intricate nanoporous biogenic carrier. The slow release of the drug from the newly formulated tablet was investigated by tracking the surface-enhanced Raman scattering (SERS) signal of the tablet solution in a series of time-dependent experiments. The SERS signal quantification is achieved using the well-known SERS spectral fingerprint of 5-fluorouracil aqueous solution adsorbed on Ag nanoparticles. The proof of concept is demonstrated by quantifying the slow release of the drug through the characteristic SERS band intensity of 5-FU in a time course of 26 h. This proof of concept boosted further investigations concerning the released drug identity in simulated solutions that mimic the pH of the upper- and lower gastrointestinal tract, as well as the multiple possibilities to control porosity and composition during powdering and treatment of biogenic material, to achieve the most convenient formulation for relevant biomedical drug delivery. Nonetheless, the present results showed great promise for innovative reusing waste biogenic 3D-nanomaterials of aquatic origin as advantageous drug carriers for slow release purposes, in line with the concept of blue bioeconomy.

2.
Sci Rep ; 11(1): 18633, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545115

RESUMO

In this study we aimed to compare the mineralogical, thermal, physicochemical, and biological characteristics of recent organic carbon-rich sediments ('sapropels') from three geographically distant Romanian lakes (Tekirghiol and Amara, SE Romania, and Ursu, Central Romania) with distinct hydrogeochemical origins, presently used for pelotherapy. The investigated lakes were classified as inland brackish Na-Cl-sulfated type (Amara), coastal moderately saline and inland hypersaline Na-Cl types (Tekirghiol and Ursu, respectively). The settled organic matter is largely composed of photosynthetic pigments derived from autochthonous phytoplankton. Kerogen was identified in the sapropel of coastal Tekirghiol Lake suggesting its incipient maturation stage. The mineral composition was fairly similar in all sapropels and mainly consisted of quartz, calcite, and aragonite. Smectite, illite, mixed layer smectite/illite appeared as major clay components. Potentially toxic elements were found in low concentrations. The physical properties (i.e., specific heat, thermal conductivity and retentivity) and cation exchange capacity are comparable to other peloids used for therapy. This study is the first comprehensive multi-approached investigation of the geochemical nature of recent sapropels in Romanian saline lakes and thus contributes to expanding our knowledge on the origin and physicochemical qualities of organic matter-rich peloids with therapeutic uses.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119223, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33262077

RESUMO

The mineralized cuticle of the mantis shrimps Squilla Mantis which serve as natural hammers, spears and armors, have attracted research attention from various fields due to its amazing mechanical properties which were studied from evolutionary and ecological points of view. Here we aimed to valorize the astonishing mantis shrimp shell waste resulted from fishery and seafood industry as valuable biogenic composite derived from nature, potentially re-usable for novel, smart materials or added-value by-products, aspect which was not deeply considered before. Employing multi-laser Raman spectroscopy and imaging, supported by x-ray diffraction and high-resolution electron microscopy, we discover that the peripheral segments anatomically known as claws and telson, featured completely different composition and morphology, suggesting different applicability. The claw presents a bulk Mg-CaCO3 structure reinforced with fluorapatite coating, while the carotenoid-rich telson presents a porous and anisotropic structure of an amorphous mixture of CaCO3 and CaPO4 in gradient deposition on the chitin-protein scaffold. Resonance Raman spectroscopy showed concentrated pools of astaxanthin carotenoid within the bright red spots visible on telson, Based on our findings, we discuss this material's potential for selective applicability, as a natural source of phosphate-carbonate minerals, antioxidants, biofertilizer, pollutant adsorbent, valuable material for regenerative medicine or even as a cell culture substrate. Knowledge-based approach on this bio-template is the basis for smart recycling of such fishery waste for sustainable development, by opening channels for blue bioeconomy avenue.


Assuntos
Quitina , Crustáceos , Animais , Alimentos Marinhos , Análise Espectral Raman , Difração de Raios X
4.
Sci Rep ; 10(1): 3019, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080287

RESUMO

3D-engineered nano-architectures with various functionalities are still difficult to obtain and translate for real-world applications. However, such nanomaterials are naturally abundant and yet wasted, but could trigger huge interest for blue bioeconomy, provided that our understanding of their ultrastructure-function is achieved. To date, the Bouligand pattern in crustaceans shell structure is believed to be unique. Here we demonstrated that in blue crab Callinectes sapidus, the 3D-nanoarchitecture is color-specific, while the blue and red-orange pigments interplay in different nano-sized channels and pores. Thinnest pores of about 20 nm are found in blue shell. Additionally, the blue pigment co-existence in specific Bouligand structure is proved for the green crab Carcinus aestuarii, although the crab does not appear blue. The pigments interplay, simultaneously detected by Raman spectroscopy in color-specific native cuticles, overturns our understanding in crustaceans coloration and may trigger the selective use of particular colored natural nanoarchitectures for broaden area of applications.


Assuntos
Braquiúros/anatomia & histologia , Pigmentação , Exoesqueleto , Animais , Braquiúros/ultraestrutura , Cor , Etanol , Minerais/análise , Pigmentos Biológicos/análise , Porosidade , Análise Espectral Raman , Água , Difração de Raios X , Xantofilas/análise
5.
Talanta ; 187: 47-58, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853065

RESUMO

To detect and recognise three structurally related marine biotoxins responsible for the diarrheic shellfish poisoning (DSP) symptom, namely okadaic acid (OA), dinophysistoxin-1 (DTX-1) and dinophysistoxin-2 (DTX-2) respectively, as well as the structurally different yessotoxin (YTX), we developed a novel surface-enhanced micro-Raman scattering (micro-SERS) approach to investigate for the first time their micro-SERS signalling in solution and jointly analysed them in conjunction with the normal and toxic mussel tissue. YTX provided the main SERS feature surprisingly similar to DTX-1 and DTX-2, suggesting similar molecular adsorption mechanism with respect to the AgNPs. A fingerprint SERS band at 1017 cm-1 characteristic for the C-CH3 stretching in DTX-1 and DTX-2 and absent in OA SERS signal, allowed direct SERS discrimination of DTX-1,2 from OA. In acid form or as dissolved potassium salt, OA showed reproducible SERS feature for 0.81 µM to 84.6 nM concentrations respectively, while its ammonium salt slightly changed the overall SERS signature. The inherently strong fluorescence of the shellfish tissue, which hampers Raman spectroscopy analysis, further increases when toxins are present in tissue. Through SERS, tissue fluorescence is partially quenched. Artificially intoxicated mussel tissue with DSP toxins and incubated with AgNPs allowed direct SERS evidence of the toxin presence, opening a novel avenue for the in situ shellfish tracking and warning via micro-SERS. Natural toxic tissue containing 57.91 µg kg-1 YTX (LC-MS confirmed) was micro-SERS assessed to validate the new algorithm for toxins detection. We showed that a portable Raman system was able to reproduce the lab-based SERS results, being suitable for in situ raw seafood screening. The new approach provides an attractive, faster, effective and low-cost alternative for seafood screening, with economic, touristic and sustainable impact in aquaculture, fisheries, seafood industry and consumer trust.


Assuntos
Bivalves/química , Toxinas Marinhas/análise , Ácido Okadáico/análise , Oxocinas/análise , Piranos/análise , Animais , Interações Hidrofóbicas e Hidrofílicas , Venenos de Moluscos , Análise Espectral Raman , Propriedades de Superfície
6.
Food Chem ; 145: 814-20, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128550

RESUMO

Thiabendazole (TBZ) is a chemical fungicide and parasiticide largely used in food industry against mold and blight in vegetables and fruits during transportation and long term deposit. We investigated the possibility to detect and monitor the TBZ from the chemically treated bananas and citrus fruits available on Romanian market, using surface enhanced Raman spectroscopy (SERS) with a compact, portable, mini-Raman spectrometer. To assess the potential of the technique for fast, cheap and sensitive detection, we report the first complete vibrational characterization of the TBZ in a large pH and concentration range in conjunction with the density functional theory (DFT) calculations. From the relative intensity of the specific SERS bands as a function of concentration, we estimated a total amount of TZB as 78 mg/kg in citrus fruits, 13 times higher than the maximum allowed by current regulations, whereas in banana fruit the value was in the allowed limit.


Assuntos
Citrus/química , Contaminação de Alimentos , Frutas/química , Fungicidas Industriais/análise , Musa/química , Resíduos de Praguicidas/análise , Tiabendazol/análise , Adsorção , Coloides , Inspeção de Alimentos/instrumentação , Inspeção de Alimentos/métodos , Fungicidas Industriais/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Modelos Químicos , Concentração Osmolar , Resíduos de Praguicidas/química , Romênia , Compostos de Prata/química , Solubilidade , Análise Espectral Raman/instrumentação , Propriedades de Superfície , Tiabendazol/química , Água/química
7.
Cancer Cell Int ; 13: 75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23890195

RESUMO

BACKGROUND: One of the most popular and versatile model of murine melanoma is by inoculating B16 cells in the syngeneic C57BL6J mouse strain. A characterization of different B16 modified cell sub-lines will be of real practical interest. For this aim, modern analytical tools like surface enhanced Raman spectroscopy/scattering (SERS) and MTT were employed to characterize both chemical composition and proliferation behavior of the selected cells. METHODS: High quality SERS signal was recorded from each of the four types of B16 cell sub-lines: B164A5, B16GMCSF, B16FLT3, B16F10, in order to observe the differences between a parent cell line (B164A5) and other derived B16 cell sub-lines. Cells were incubated with silver nanoparticles of 50-100 nm diameter and the nanoparticles uptake inside the cells cytoplasm was proved by transmission electron microscopy (TEM) investigations. In order to characterize proliferation, growth curves of the four B16 cell lines, using different cell numbers and FCS concentration were obtained employing the MTT proliferation assay. For correlations doubling time were calculated. RESULTS: SERS bands allowed the identification inside the cells of the main bio-molecular components such as: proteins, nucleic acids, and lipids. An "on and off" SERS effect was constantly present, which may be explained in terms of the employed laser power, as well as the possible different orientations of the adsorbed species in the cells in respect to the Ag nanoparticles. MTT results showed that among the four tested cell sub-lines B16 F10 is the most proliferative and B164A5 has the lower growth capacity. Regarding B16FLT3 cells and B16GMCSF cells, they present proliferation ability in between with slight slower potency for B16GMCSF cells. CONCLUSION: Molecular fingerprint and proliferation behavior of four B16 melanoma cell sub-lines were elucidated by associating SERS investigations with MTT proliferation assay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA