Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675662

RESUMO

Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n-decanol (nD) or n-dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p-nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n-alcohols. The variables of the PNP conversion process and p-aminophenol (PAP) transport are as follows: the nature of the membrane alcohol, the flow regime, the pH difference between the source and receiving phases and the number of operating cycles. The conversion results are in all cases better for nD than nDD. The counter-current flow regime is superior to the co-current flow. Increasing the pH difference between the source and receiving phases amplifies the process. The number of operating cycles is limited to five, after which the regeneration of the membrane dispersion is required. The apparent catalytic rate constant (kapp) of the new catalytic material based on the emulsion membrane with the nanodispersion of osmium nanoparticles (0.1 × 10-3 s-1 for n-dodecanol and 0.9 × 10-3 s-1 for n-decanol) is lower by an order of magnitude compared to those based on adsorption on catalysts from the platinum metal group. The advantage of the tested membrane catalytic material is that it extracts p-aminophenol in the acid-receiving phase.

2.
Membranes (Basel) ; 12(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35448335

RESUMO

Regardless of the type of liquid membrane (LM) (Bulk Liquid Membranes (BLM), Supported Liquid Membranes (SLM) or Emulsion Liquid Membranes (ELM)), transport and separation of chemical species are conditioned by the operational (OP) and constructive design parameters (DP) of the permeation module. In the present study, the pH of the aqueous source phase (SP) and receiving phase (RP) of the proposed membrane system were selected as operational parameters. The mode of contacting the phases was chosen as the convective transport generator. The experiments used BLM-type membranes with spheres in free rotation as film contact elements of the aqueous phases with the membrane. The target chemical species were selected in the range of phenol derivatives (PD), 4−nitrophenol (NP), 2,4−dichlorophenol (DCP) and 2,4−dinitrophenol (DNP), all being substances of technical-economic and environmental interest. Due to their acid character, they allow the evaluation of the influence of pH as a determining operational parameter of transport and separation through a membrane consisting of n−octanol or n−decanol (n−AlcM). The comparative study performed for the transport of 4−nitrophenol (NP) showed that the module based on spheres (Ms) was more performant than the one with phase dispersion under the form of droplets (Md). The sphere material influenced the transport of 4−nitrophenol (NP). The transport module with glass spheres (Gl) was superior to the one using copper spheres (Cu), but especially with the one with steel spheres (St). In all the studied cases, the sphere-based module (Ms) had superior transport results compared to the module with droplets (Md). The extraction efficiency (EE) and the transport of 2,4−dichlorophenol (DCP) and 2,4−dinitrophenol (DNP), studied in the module with glass spheres, showed that the two phenolic derivatives could be separated by adjusting the pH of the source phase. At the acidic pH of the source phase (pH = 2), the two derivatives were extracted with good results (EE > 90%), while for pH values ranging from 4 to 6, they could be separated, with DCP having doubled separation efficiency compared to DNP. At a pH of 8 in the source phase, the extraction efficiency halved for both phenolic compounds.

3.
Nanomaterials (Basel) ; 11(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34684968

RESUMO

Composite membranes play a very important role in the separation, concentration, and purification processes, but especially in membrane reactors and membrane bioreactors. The development of composite membranes has gained momentum especially through the involvement of various nanoparticles, polymeric, oxide, or metal, that have contributed to increasing their reactivity and selectivity. This paper presents the preparation and characterization of an active metal nanoparticle-support polymer type composite membrane, based on osmium nanoparticles obtained in situ on a polypropylene hollow fiber membrane. Osmium nanoparticles are generated from a solution of osmium tetroxide in tert-butyl alcohol by reduction with molecular hydrogen in a contactor with a polypropylene membrane. The composite osmium-polypropylene hollow fiber obtained membranes (Os-PPM) were characterized from the morphological and structural points of view: scanning electron microscopy (SEM), high resolution SEM (HR-SEM), energy dispersive spectroscopy analysis (EDAX), X-ray diffraction analysis (XRD), Fourier transform Infrared (FTIR) spectroscopy, thermal gravimetric analysis, and differential scanning calorimetry (TGA, DSC). The process performance was tested in a redox process of p-nitrophenol and 10-undecylenic (10-undecenoic) acid, as a target substance of biological or biomedical interest, in solutions of lower aliphatic alcohols in a membrane contactor with a prepared composite membrane. The characteristics of osmium nanoparticles-polypropylene hollow fiber membranes open the way to biological and biotechnological applications. These membranes do not contaminate the working environment, operate at relatively low temperatures, provide a large contact area between reactants, allow successive oxidation and reduction operations in the same module, and help to recover the reaction mass by ultrafiltration. The results obtained show that the osmium-polypropylene composite membrane allows the reduction of p-nitrophenol or the oxidation of 10-undecylenic acid, the conversion depending on the concentration in the lower aliphatic alcohol, the nature of the lower aliphatic alcohol, and the oxidant or reducing flow through the membrane contactor.

4.
Membranes (Basel) ; 11(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34436396

RESUMO

Membranes are associated with the efficient processes of separation, concentration and purification, but a very important aspect of them is the realization of a reaction process simultaneously with the separation process. From a practical point of view, chemical reactions have been introduced in most membrane systems: with on-liquid membranes, with inorganic membranes or with polymeric and/or composite membranes. This paper presents the obtaining of polymeric membranes containing metallic osmium obtained in situ. Cellulose acetate (CA), polysulfone (PSf) and polypropylene hollow fiber membranes (PPM) were used as support polymer membranes. The metallic osmium is obtained directly onto the considered membranes using a solution of osmium tetroxide (OsO4), dissolved in tert-butyl alcohol (t-Bu-OH) by reduction with molecular hydrogen. The composite osmium-polymer (Os-P)-obtained membranes were characterized in terms of the morphological and structural points of view: scanning electron microscopy (SEM), high-resolution SEM (HR-SEM), energy-dispersive spectroscopy analysis (EDAX), Fourier Transform Infra-Red (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The process performance was tested for reduction of 5-nitrobenzimidazole to 5-aminobenzimidazole with molecular hydrogen. The paper presents the main aspects of the possible mechanism of transformation of 5-nitrobenzimidazole to 5-aminobenzimidazole with hydrogen gas in the reaction system with osmium-polymer membrane (Os-P).

5.
Membranes (Basel) ; 11(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198951

RESUMO

The separation, concentration and transport of the amino acids through membranes have been continuously developed due to the multitude of interest amino acids of interest and the sources from which they must be recovered. At the same time, the types of membranes used in the sepa-ration of the amino acids are the most diverse: liquids, ion exchangers, inorganic, polymeric or composites. This paper addresses the recuperative separation of three amino acids (alanine, phe-nylalanine, and methionine) using membranes from cellulosic derivatives in polypropylene ma-trix. The microfiltration membranes (polypropylene hollow fibers) were impregnated with solu-tions of some cellulosic derivatives: cellulose acetate, 2-hydroxyethyl-cellulose, methyl 2-hydroxyethyl-celluloseand sodium carboxymethyl-cellulose. The obtained membranes were characterized in terms of the separation performance of the amino acids considered (retention, flux, and selectivity) and from a morphological and structural point of view: scanning electron microscopy (SEM), high resolution SEM (HR-SEM), Fourier transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and thermal gravimetric analyzer (TGA). The re-sults obtained show that phenylalanine has the highest fluxes through all four types of mem-branes, followed by methionine and alanine. Of the four kinds of membrane, the most suitable for recuperative separation of the considered amino acids are those based on cellulose acetate and methyl 2-hydroxyethyl-cellulose.

6.
Membranes (Basel) ; 11(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916200

RESUMO

The unpleasant odor that appears in the industrial and adjacent waste processing areas is a permanent concern for the protection of the environment and, especially, for the quality of life. Among the many variants for removing substance traces, which give an unpleasant smell to the air, membrane-based methods or techniques are viable options. Their advantages consist of installation simplicity and scaling possibility, selectivity; moreover, the flows of odorous substances are direct, automation is complete by accessible operating parameters (pH, temperature, ionic strength), and the operation costs are low. The paper presents the process of obtaining membranes from cellulosic derivatives containing silver nanoparticles, using accessible raw materials (namely motion picture films from abandoned archives). The technique used for membrane preparation was the immersion precipitation for phase inversion of cellulosic polymer solutions in methylene chloride: methanol, 2:1 volume. The membranes obtained were morphologically and structurally characterized by scanning electron microscopy (SEM) and high resolution SEM (HR SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectrometry (FTIR), thermal analysis (TG, ATD). Then, the membrane performance process (extraction efficiency and species flux) was determined using hydrogen sulfide (H2S) and ethanethiol (C2H5SH) as target substances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA