RESUMO
The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.
Assuntos
Doença de Alzheimer , Transtornos da Memória , Masculino , Feminino , Humanos , Animais , Camundongos , Idoso , Colesterol 24-Hidroxilase , Transtornos da Memória/etiologia , Colesterol , Cognição , Doença de Alzheimer/genética , EstrogêniosRESUMO
Alzheimer's disease is a multifactorial disorder with large heterogeneity. Comorbidities such as hypertension, hypercholesterolaemia and diabetes are known contributors to disease progression. However, less is known about their mechanistic contribution to Alzheimer's pathology and neurodegeneration. The aim of this study was to investigate the relationship of several biomarkers related to risk mechanisms in Alzheimer's disease with the well-established Alzheimer's disease markers in a memory clinic population without common comorbidities. We investigated 13 molecular markers representing key mechanisms underlying Alzheimer's disease pathogenesis in CSF from memory clinic patients without diagnosed hypertension, hypercholesterolaemia or diabetes nor other neurodegenerative disorders. An analysis of covariance was used to compare biomarker levels between clinical groups. Associations were analysed by linear regression. Two-step cluster analysis was used to determine patient clusters. Two key markers were analysed by immunofluorescence staining in the hippocampus of non-demented control and Alzheimer's disease individuals. CSF samples from a total of 90 participants were included in this study: 30 from patients with subjective cognitive decline (age 62.4 ± 4.38, female 60%), 30 with mild cognitive impairment (age 65.6 ± 7.48, female 50%) and 30 with Alzheimer's disease (age 68.2 ± 7.86, female 50%). Angiotensinogen, thioredoxin-1 and interleukin-15 had the most prominent associations with Alzheimer's disease pathology, synaptic and axonal damage markers. Synaptosomal-associated protein 25â kDa and neurofilament light chain were increased in mild cognitive impairment and Alzheimer's disease patients. Grouping biomarkers by biological function showed that inflammatory and survival components were associated with Alzheimer's disease pathology, synaptic dysfunction and axonal damage. Moreover, a vascular/metabolic component was associated with synaptic dysfunction. In the data-driven analysis, two patient clusters were identified: Cluster 1 had increased CSF markers of oxidative stress, vascular pathology and neuroinflammation and was characterized by elevated synaptic and axonal damage, compared with Cluster 2. Clinical groups were evenly distributed between the clusters. An analysis of post-mortem hippocampal tissue showed that compared with non-demented controls, angiotensinogen staining was higher in Alzheimer's disease and co-localized with phosphorylated-tau. The identification of biomarker-driven endophenotypes in cognitive disorder patients further highlights the biological heterogeneity of Alzheimer's disease and the importance of tailored prevention and treatment strategies.
RESUMO
Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.
Assuntos
Melanoma , Monócitos , Camundongos , Animais , Monócitos/metabolismo , Diferenciação Celular , Colesterol/metabolismo , Apresentação de Antígeno , Células Dendríticas/metabolismo , Microambiente TumoralRESUMO
Both plasma and cerebrospinal fluid (CSF) are rich in cholesterol and its metabolites. Here we describe in detail a methodology for the identification and quantification of multiple sterols including oxysterols and sterol-acids found in these fluids. The method is translatable to any laboratory with access to liquid chromatography - tandem mass spectrometry. The method exploits isotope-dilution mass spectrometry for absolute quantification of target metabolites. The method is applicable for semi-quantification of other sterols for which isotope labelled surrogates are not available and approximate quantification of partially identified sterols. Values are reported for non-esterified sterols in the absence of saponification and total sterols following saponification. In this way absolute quantification data is reported for 17 sterols in the NIST SRM 1950 plasma along with semi-quantitative data for 8 additional sterols and approximate quantification for one further sterol. In a pooled (CSF) sample used for internal quality control, absolute quantification was performed on 10 sterols, semi-quantification on 9 sterols and approximate quantification on a further three partially identified sterols. The value of the method is illustrated by confirming the sterol phenotype of a patient suffering from ACOX2 deficiency, a rare disorder of bile acid biosynthesis, and in a plasma sample from a patient suffering from cerebrotendinous xanthomatosis, where cholesterol 27-hydroxylase is deficient.
Assuntos
Oxisteróis , Colesterol , Cromatografia Líquida , Humanos , Espectrometria de Massas , EsteróisRESUMO
Phytosterols are stucturally correlated to the endogenous ligands of Liver X Receptor (LXR), a ligand-activated nuclear receptor that has emerged as an attractive drug target due to its ability to integrate metabolic and inflammatory signaling. Natural and semi-synthetic phytosterol derivatives characterized by the presence of side-chain oxygenated functions have shown to be able to modulate LXR activity. Here, we describe the efficient synthesis of four stigmastane derivatives, endowed with a hydroxyl group at C24 position, namely (24R)- and (24S)-stigmasta-5,28-diene-3ß,24-ols (also referred to as saringosterols, 10a and 10b) and (24R)- and (24S)-stigmasta-5-ene-3ß,24-ols (11a and 11b), starting from the readily available stigmasterol. Thanks to X-ray crystallography the absolute configuration of the newly created chiral centers was definitively assigned for all the four compounds. The subsequent luciferase assays with GAL-4 chimeric receptors evidenced the ability of the two 24(S)-epimers, 10b and 11b, to interact with LXRs, showing the same degree of affinity as (22R)-hydroxycholesterol (1). With regard to the isoform selectivity both the derivatives 10b and 11b showed a preference for LXRß, up to 4-fold in terms of efficacy for 11b. The gene expression profiling of (24S)-stigmasta-5,28-diene-3ß,24-ol (10a) and (24S)-stigmasta-5-ene-3ß,24-ol (11a) demonstrated the capability of both the compounds to induce the expression of four well-known LXR target genes, such as ABCA1, SREBP1c, FASN, and SCD1 in U937 monocytic cell line, thus supporting the hypothesis they were LXR positive modulators.