RESUMO
Neurophysiology has long progressed through exploratory experiments and chance discoveries. Anecdotes abound of researchers listening to spikes in real time and noticing patterns of activity related to ongoing stimuli or behaviors. With the advent of large-scale recordings, such close observation of data has become difficult. To find patterns in large-scale neural data, we developed 'Rastermap', a visualization method that displays neurons as a raster plot after sorting them along a one-dimensional axis based on their activity patterns. We benchmarked Rastermap on realistic simulations and then used it to explore recordings of tens of thousands of neurons from mouse cortex during spontaneous, stimulus-evoked and task-evoked epochs. We also applied Rastermap to whole-brain zebrafish recordings; to wide-field imaging data; to electrophysiological recordings in rat hippocampus, monkey frontal cortex and various cortical and subcortical regions in mice; and to artificial neural networks. Finally, we illustrate high-dimensional scenarios where Rastermap and similar algorithms cannot be used effectively.
RESUMO
Neural circuits connecting the cerebral cortex, the basal ganglia and the thalamus are fundamental networks for sensorimotor processing and their dysfunction has been consistently implicated in neuropsychiatric disorders 1-9 . These recursive, loop circuits have been investigated in animal models and by clinical neuroimaging, however, direct functional access to developing human neurons forming these networks has been limited. Here, we use human pluripotent stem cells to reconstruct an in vitro cortico-striatal-thalamic-cortical circuit by creating a four-part loop assembloid. More specifically, we generate regionalized neural organoids that resemble the key elements of the cortico-striatal-thalamic-cortical circuit, and functionally integrate them into loop assembloids using custom 3D-printed biocompatible wells. Volumetric and mesoscale calcium imaging, as well as extracellular recordings from individual parts of these assembloids reveal the emergence of synchronized patterns of neuronal activity. In addition, a multi-step rabies retrograde tracing approach demonstrate the formation of neuronal connectivity across the network in loop assembloids. Lastly, we apply this system to study heterozygous loss of ASH1L gene associated with autism spectrum disorder and Tourette syndrome and discover aberrant synchronized activity in disease model assembloids. Taken together, this human multi-cellular platform will facilitate functional investigations of the cortico-striatal-thalamic-cortical circuit in the context of early human development and in disease conditions.
RESUMO
Spike sorting is the computational process of extracting the firing times of single neurons from recordings of local electrical fields. This is an important but hard problem in neuroscience, made complicated by the nonstationarity of the recordings and the dense overlap in electrical fields between nearby neurons. To address the spike-sorting problem, we have been openly developing the Kilosort framework. Here we describe the various algorithmic steps introduced in different versions of Kilosort. We also report the development of Kilosort4, a version with substantially improved performance due to clustering algorithms inspired by graph-based approaches. To test the performance of Kilosort, we developed a realistic simulation framework that uses densely sampled electrical fields from real experiments to generate nonstationary spike waveforms and realistic noise. We found that nearly all versions of Kilosort outperformed other algorithms on a variety of simulated conditions and that Kilosort4 performed best in all cases, correctly identifying even neurons with low amplitudes and small spatial extents in high drift conditions.
Assuntos
Potenciais de Ação , Algoritmos , Simulação por Computador , Modelos Neurológicos , Neurônios , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Animais , Humanos , Processamento de Sinais Assistido por ComputadorRESUMO
Recent studies in mice have shown that orofacial behaviors drive a large fraction of neural activity across the brain. To understand the nature and function of these signals, we need better computational models to characterize the behaviors and relate them to neural activity. Here we developed Facemap, a framework consisting of a keypoint tracker and a deep neural network encoder for predicting neural activity. Our algorithm for tracking mouse orofacial behaviors was more accurate than existing pose estimation tools, while the processing speed was several times faster, making it a powerful tool for real-time experimental interventions. The Facemap tracker was easy to adapt to data from new labs, requiring as few as 10 annotated frames for near-optimal performance. We used the keypoints as inputs to a deep neural network which predicts the activity of ~50,000 simultaneously-recorded neurons and, in visual cortex, we doubled the amount of explained variance compared to previous methods. Using this model, we found that the neuronal activity clusters that were well predicted from behavior were more spatially spread out across cortex. We also found that the deep behavioral features from the model had stereotypical, sequential dynamics that were not reversible in time. In summary, Facemap provides a stepping stone toward understanding the function of the brain-wide neural signals and their relation to behavior.
Assuntos
Encéfalo , Redes Neurais de Computação , Camundongos , Animais , Algoritmos , Neurônios/fisiologia , Córtex CerebralRESUMO
Artificial activation of anatomically localized, genetically defined hypothalamic neuron populations is known to trigger distinct innate behaviors, suggesting a hypothalamic nucleus-centered organization of behavior control. To assess whether the encoding of behavior is similarly anatomically confined, we performed simultaneous neuron recordings across twenty hypothalamic regions in freely moving animals. Here we show that distinct but anatomically distributed neuron ensembles encode the social and fear behavior classes, primarily through mixed selectivity. While behavior class-encoding ensembles were spatially distributed, individual ensembles exhibited strong localization bias. Encoding models identified that behavior actions, but not motion-related variables, explained a large fraction of hypothalamic neuron activity variance. These results identify unexpected complexity in the hypothalamic encoding of instincts and provide a foundation for understanding the role of distributed neural representations in the expression of behaviors driven by hardwired circuits.
RESUMO
Pretrained neural network models for biological segmentation can provide good out-of-the-box results for many image types. However, such models do not allow users to adapt the segmentation style to their specific needs and can perform suboptimally for test images that are very different from the training images. Here we introduce Cellpose 2.0, a new package that includes an ensemble of diverse pretrained models as well as a human-in-the-loop pipeline for rapid prototyping of new custom models. We show that models pretrained on the Cellpose dataset can be fine-tuned with only 500-1,000 user-annotated regions of interest (ROI) to perform nearly as well as models trained on entire datasets with up to 200,000 ROI. A human-in-the-loop approach further reduced the required user annotation to 100-200 ROI, while maintaining high-quality segmentations. We provide software tools such as an annotation graphical user interface, a model zoo and a human-in-the-loop pipeline to facilitate the adoption of Cellpose 2.0.
Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , SoftwareRESUMO
Brains must represent the outside world so that animals survive and thrive. In early sensory systems, neural populations have diverse receptive fields structured to detect important features in inputs, yet significant variability has been ignored in classical models of sensory neurons. We model neuronal receptive fields as random, variable samples from parameterized distributions and demonstrate this model in two sensory modalities using data from insect mechanosensors and mammalian primary visual cortex. Our approach leads to a significant theoretical connection between the foundational concepts of receptive fields and random features, a leading theory for understanding artificial neural networks. The modeled neurons perform a randomized wavelet transform on inputs, which removes high frequency noise and boosts the signal. Further, these random feature neurons enable learning from fewer training samples and with smaller networks in artificial tasks. This structured random model of receptive fields provides a unifying, mathematically tractable framework to understand sensory encodings across both spatial and temporal domains.
Assuntos
Redes Neurais de Computação , Neurônios , Animais , Neurônios/fisiologia , Neurônios Aferentes , MamíferosRESUMO
The medial entorhinal cortex is part of a neural system for mapping the position of an individual within a physical environment1. Grid cells, a key component of this system, fire in a characteristic hexagonal pattern of locations2, and are organized in modules3 that collectively form a population code for the animal's allocentric position1. The invariance of the correlation structure of this population code across environments4,5 and behavioural states6,7, independent of specific sensory inputs, has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) as a possible substrate of the grid pattern1,8-11. However, whether grid cell networks show continuous attractor dynamics, and how they interface with inputs from the environment, has remained unclear owing to the small samples of cells obtained so far. Here, using simultaneous recordings from many hundreds of grid cells and subsequent topological data analysis, we show that the joint activity of grid cells from an individual module resides on a toroidal manifold, as expected in a two-dimensional CAN. Positions on the torus correspond to positions of the moving animal in the environment. Individual cells are preferentially active at singular positions on the torus. Their positions are maintained between environments and from wakefulness to sleep, as predicted by CAN models for grid cells but not by alternative feedforward models12. This demonstration of network dynamics on a toroidal manifold provides a population-level visualization of CAN dynamics in grid cells.
Assuntos
Células de Grade/fisiologia , Modelos Neurológicos , Potenciais de Ação , Animais , Córtex Entorrinal/anatomia & histologia , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Células de Grade/classificação , Masculino , Ratos , Ratos Long-Evans , Sono/fisiologia , Percepção Espacial/fisiologia , Vigília/fisiologiaRESUMO
State-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites. However, due to volume limitations there are typically many fewer wires carrying signals off the probe, which restricts the number of channels that can be recorded simultaneously. To overcome this fundamental constraint, we propose a method called electrode pooling that uses a single wire to serve many recording sites through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We then demonstrate its feasibility by implementing electrode pooling on the Neuropixels 1.0 electrode array and characterizing its effect on signal and noise. Finally we use simulations to explore the conditions under which electrode pooling saves wires without compromising the content of the recordings. We make recommendations on the design of future devices to take advantage of this strategy.
Assuntos
Eletrodos Implantados , Eletrofisiologia/métodos , Espaço Extracelular/fisiologia , Silício/química , Potenciais de Ação , Animais , Encéfalo/fisiologia , Eletrofisiologia/instrumentação , Desenho de Equipamento , Camundongos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Processamento de Sinais Assistido por ComputadorRESUMO
Physiological need states direct decision-making toward re-establishing homeostasis. Using a two-alternative forced choice task for mice that models elements of human decisions, we found that varying hunger and thirst states caused need-inappropriate choices, such as food seeking when thirsty. These results show limits on interoceptive knowledge of hunger and thirst states to guide decision-making. Instead, need states were identified after food and water consumption by outcome evaluation, which depended on the medial prefrontal cortex.
Assuntos
Tomada de Decisões/fisiologia , Fome/fisiologia , Córtex Pré-Frontal/fisiologia , Sede/fisiologia , Animais , Feminino , Interocepção/fisiologia , Masculino , CamundongosRESUMO
Measuring the dynamics of neural processing across time scales requires following the spiking of thousands of individual neurons over milliseconds and months. To address this need, we introduce the Neuropixels 2.0 probe together with newly designed analysis algorithms. The probe has more than 5000 sites and is miniaturized to facilitate chronic implants in small mammals and recording during unrestrained behavior. High-quality recordings over long time scales were reliably obtained in mice and rats in six laboratories. Improved site density and arrangement combined with newly created data processing methods enable automatic post hoc correction for brain movements, allowing recording from the same neurons for more than 2 months. These probes and algorithms enable stable recordings from thousands of sites during free behavior, even in small animals such as mice.
Assuntos
Encéfalo/fisiologia , Eletrodos Implantados , Eletrofisiologia/instrumentação , Microeletrodos , Neurônios/fisiologia , Potenciais de Ação , Algoritmos , Animais , Eletrofisiologia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miniaturização , RatosRESUMO
Individual neurons in visual cortex provide the brain with unreliable estimates of visual features. It is not known whether the single-neuron variability is correlated across large neural populations, thus impairing the global encoding of stimuli. We recorded simultaneously from up to 50,000 neurons in mouse primary visual cortex (V1) and in higher order visual areas and measured stimulus discrimination thresholds of 0.35° and 0.37°, respectively, in an orientation decoding task. These neural thresholds were almost 100 times smaller than the behavioral discrimination thresholds reported in mice. This discrepancy could not be explained by stimulus properties or arousal states. Furthermore, behavioral variability during a sensory discrimination task could not be explained by neural variability in V1. Instead, behavior-related neural activity arose dynamically across a network of non-sensory brain areas. These results imply that perceptual discrimination in mice is limited by downstream decoders, not by neural noise in sensory representations.
Assuntos
Discriminação Psicológica/fisiologia , Neurônios/fisiologia , Córtex Visual Primário/fisiologia , Percepção Visual , Animais , Nível de Alerta , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa , Estimulação Luminosa , Córtex Visual Primário/citologia , Limiar SensorialRESUMO
Many biological applications require the segmentation of cell bodies, membranes and nuclei from microscopy images. Deep learning has enabled great progress on this problem, but current methods are specialized for images that have large training datasets. Here we introduce a generalist, deep learning-based segmentation method called Cellpose, which can precisely segment cells from a wide range of image types and does not require model retraining or parameter adjustments. Cellpose was trained on a new dataset of highly varied images of cells, containing over 70,000 segmented objects. We also demonstrate a three-dimensional (3D) extension of Cellpose that reuses the two-dimensional (2D) model and does not require 3D-labeled data. To support community contributions to the training data, we developed software for manual labeling and for curation of the automated results. Periodically retraining the model on the community-contributed data will ensure that Cellpose improves constantly.
Assuntos
Algoritmos , Núcleo Celular/química , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Neurônios/citologia , Software , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
At various stages of the visual system, visual responses are modulated by arousal. Here, we find that in mice this modulation operates as early as in the first synapse from the retina and even in retinal axons. To measure retinal activity in the awake, intact brain, we imaged the synaptic boutons of retinal axons in the superior colliculus. Their activity depended not only on vision but also on running speed and pupil size, regardless of retinal illumination. Arousal typically reduced their visual responses and selectivity for direction and orientation. Recordings from retinal axons in the optic tract revealed that arousal modulates the firing of some retinal ganglion cells. Arousal had similar effects postsynaptically in colliculus neurons, independent of activity in the other main source of visual inputs to the colliculus, the primary visual cortex. These results indicate that arousal modulates activity at every stage of the mouse visual system.
Assuntos
Nível de Alerta/fisiologia , Axônios/fisiologia , Neurônios/fisiologia , Orientação Espacial/fisiologia , Células Ganglionares da Retina/fisiologia , Colículos Superiores/fisiologia , Animais , Axônios/metabolismo , Locomoção , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Trato Óptico , Terminações Pré-Sinápticas/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Colículos Superiores/diagnóstico por imagem , Colículos Superiores/metabolismo , Vias Visuais/fisiologia , VigíliaRESUMO
A neuronal population encodes information most efficiently when its stimulus responses are high-dimensional and uncorrelated, and most robustly when they are lower-dimensional and correlated. Here we analysed the dimensionality of the encoding of natural images by large populations of neurons in the visual cortex of awake mice. The evoked population activity was high-dimensional, and correlations obeyed an unexpected power law: the nth principal component variance scaled as 1/n. This scaling was not inherited from the power law spectrum of natural images, because it persisted after stimulus whitening. We proved mathematically that if the variance spectrum was to decay more slowly then the population code could not be smooth, allowing small changes in input to dominate population activity. The theory also predicts larger power-law exponents for lower-dimensional stimulus ensembles, which we validated experimentally. These results suggest that coding smoothness may represent a fundamental constraint that determines correlations in neural population codes.
Assuntos
Modelos Neurológicos , Estimulação Luminosa , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Reprodutibilidade dos TestesRESUMO
Neuronal populations in sensory cortex produce variable responses to sensory stimuli and exhibit intricate spontaneous activity even without external sensory input. Cortical variability and spontaneous activity have been variously proposed to represent random noise, recall of prior experience, or encoding of ongoing behavioral and cognitive variables. Recording more than 10,000 neurons in mouse visual cortex, we observed that spontaneous activity reliably encoded a high-dimensional latent state, which was partially related to the mouse's ongoing behavior and was represented not just in visual cortex but also across the forebrain. Sensory inputs did not interrupt this ongoing signal but added onto it a representation of external stimuli in orthogonal dimensions. Thus, visual cortical population activity, despite its apparently noisy structure, reliably encodes an orthogonal fusion of sensory and multidimensional behavioral information.
Assuntos
Comportamento/fisiologia , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Cálcio/metabolismo , Potenciais Evocados Visuais/fisiologia , Neuroimagem Funcional , Camundongos , Neurônios/fisiologia , Estimulação LuminosaRESUMO
Physiological needs produce motivational drives, such as thirst and hunger, that regulate behaviors essential to survival. Hypothalamic neurons sense these needs and must coordinate relevant brainwide neuronal activity to produce the appropriate behavior. We studied dynamics from ~24,000 neurons in 34 brain regions during thirst-motivated choice behavior in 21 mice as they consumed water and became sated. Water-predicting sensory cues elicited activity that rapidly spread throughout the brain of thirsty animals. These dynamics were gated by a brainwide mode of population activity that encoded motivational state. After satiation, focal optogenetic activation of hypothalamic thirst-sensing neurons returned global activity to the pre-satiation state. Thus, motivational states specify initial conditions that determine how a brainwide dynamical system transforms sensory input into behavioral output.
Assuntos
Comportamento de Escolha/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Vias Neurais/fisiologia , Sede/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Optogenética , Células Receptoras Sensoriais/fisiologia , Análise de Célula ÚnicaRESUMO
Electrophysiology has long been the workhorse of neuroscience, allowing scientists to record with millisecond precision the action potentials generated by neurons in vivo. Recently, calcium imaging of fluorescent indicators has emerged as a powerful alternative. This technique has its own strengths and weaknesses and unique data processing problems and interpretation confounds. Here we review the computational methods that convert raw calcium movies to estimates of single neuron spike times with minimal human supervision. By computationally addressing the weaknesses of calcium imaging, these methods hold the promise of significantly improving data quality. We also introduce a new metric to evaluate the output of these processing pipelines, which is based on the cluster isolation distance routinely used in electrophysiology.
Assuntos
Neurônios , Potenciais de Ação , Cálcio , Fenômenos Eletrofisiológicos , HumanosRESUMO
Calcium imaging is a powerful method to record the activity of neural populations in many species, but inferring spike times from calcium signals is a challenging problem. We compared multiple approaches using multiple datasets with ground truth electrophysiology and found that simple non-negative deconvolution (NND) outperformed all other algorithms on out-of-sample test data. We introduce a novel benchmark applicable to recordings without electrophysiological ground truth, based on the correlation of responses to two stimulus repeats, and used this to show that unconstrained NND also outperformed the other algorithms when run on "zoomed out" datasets of â¼10,000 cell recordings from the visual cortex of mice of either sex. Finally, we show that NND-based methods match the performance of a supervised method based on convolutional neural networks while avoiding some of the biases of such methods, and at much faster running times. We therefore recommend that spikes be inferred from calcium traces using simple NND because of its simplicity, efficiency, and accuracy.SIGNIFICANCE STATEMENT The experimental method that currently allows for recordings of the largest numbers of cells simultaneously is two-photon calcium imaging. However, use of this powerful method requires that neuronal firing times be inferred correctly from the large resulting datasets. Previous studies have claimed that complex supervised learning algorithms outperform simple deconvolution methods at this task. Unfortunately, these studies suffered from several problems and biases. When we repeated the analysis, using the same data and correcting these problems, we found that simpler spike inference methods perform better. Even more importantly, we found that supervised learning methods can introduce artifactual structure into spike trains, which can in turn lead to erroneous scientific conclusions. Of the algorithms we evaluated, we found that an extremely simple method performed best in all circumstances tested, was much faster to run, and was insensitive to parameter choices, making incorrect scientific conclusions much less likely.
Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neurônios/fisiologia , Córtex Visual/fisiologia , Algoritmos , Animais , Fenômenos Eletrofisiológicos , Feminino , Masculino , CamundongosRESUMO
In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.