RESUMO
Triphala-based carbon dots (T-CDs) were successfully prepared using a simple one-step hydrothermal method. T-CDs were characterized by absorbance, fluorescence, Fourier-transform infrared, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. T-CDs showed bright blue fluorescence at 434 nm upon excitation at 360 nm. Functional composite films were prepared using poly(vinyl alcohol) and gelatin mixture by incorporating T-CDs and applied as a packaging film to extend the shelf life of chicken. The antibacterial activity of T-CDs against Listeria monocytogenes and Staphylococcus aureus was evaluated using well diffusion and colony count methods. T-CDs were evenly dispersed throughout the PVA/Gel solution to form a dense and uninterrupted film. They also formed strong bonds with polymer chains, which improved the tensile strength of the film from 32.44 to 42.70 MPa. Furthermore, the presence of T-CDs significantly enhanced the UV-blocking ability of the PVA/Gel films, achieving 99.7 % for UV-B and 97.2 % for UV-A. In addition, the PVA/Gel/T-CDs composite films showed excellent antioxidant, antimicrobial and UV-barrier properties, extending the shelf life of chicken. Therefore, the PVA/Gel/T-CDs composite films showed great potential as an active food packaging material to extend the shelf life and preserve the visual quality of packaged meat.
RESUMO
Conventional food preservation methods such as heat treatment, irradiation, chemical treatment, refrigeration, and coating have various disadvantages, like loss of food quality, nutrition, and cost-effectiveness. Accordingly, cold plasma is one of the new technologies for food processing and has played an important role in preventing food spoilage. Specifically, in-package cold plasma has become a modern trend to decontaminate, process, and package food simultaneously. This strategy has proven successful in processing various fresh food ingredients, including spinach, fruits, vegetables, and meat. In particular, cold plasma treatment within the package reduces the risk of post-processing contamination. Cryoplasm decontamination within packaging has been reported to reduce significantly the microbial load of many foods' spoilage-causing pathogens. However, studies are needed to focus more on the effects of in-package treatments on endogenous enzyme activity, pest control, and removal of toxic pesticide residues. In this review, we comprehensively evaluated the efficacy of in-package low-temperature plasma treatment to extend the shelf life of various foods. The mechanisms by which cold plasma interacts with food were investigated, emphasizing its effects on pathogen reduction, spoilage mitigation, and surface modification. The review also critically assessed the effects of the treatments on food quality, regulatory considerations, and their potential as viable technologies to improve food safety and packaging life. In-package cold plasma treatment could revolutionize food storage when combined with other sophisticated technologies such as nanotechnology.
Assuntos
Embalagem de Alimentos , Gases em Plasma , Embalagem de Alimentos/métodos , Gases em Plasma/farmacologia , Armazenamento de Alimentos/métodos , Conservação de Alimentos/métodos , Manipulação de AlimentosRESUMO
The impact of ZnO/SnO2/reduced graphene oxide nanocomposites (ZnO/SnO2/rGO NCs) for improved photocatalytic degradation of organic dye pollution is examined in this study. The developed ternary nanocomposites had a variety of characteristics that were detected, such as crystallinity, recombination of photogenerated charge carriers, energy gap, and surface morphologies. When rGO was added to the mixture, the optical band gap energy of ZnO/SnO2 was lowered, which improved the photocatalytic activity. Additionally, in comparison to ZnO, ZnO/rGO, SnO2/rGO samples, the ZnO/SnO2/rGO nanocomposites demonstrated exceptional photocatalytic effectiveness for the destruction of orange II (99.8%) and reactive red 120 dye (97.02%), respectively after 120 min exposure to sunlight. The high electron transport properties of the rGO layers, which make it feasible to efficiently separate electron-hole pairs, are attributed to the enhanced photocatalytic activity of the ZnO/SnO2/rGO nanocomposites. According to the results, synthesized ZnO/SnO2/rGO nanocomposites are a cost-efficient option for removing dye pollutants from an aqueous ecosystem. Studies show that ZnO/SnO2/rGO nanocomposites are effective photocatalysts and may one day serve as the ideal material to reduce water pollution.
Assuntos
Poluentes Ambientais , Nanocompostos , Óxido de Zinco , EcossistemaRESUMO
Herein, we report an Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts synthesized by co-precipitation and incipient wet impregnation approach for acetamiprid degradation, antibacterial, antioxidant, and toxicity assay. Initially, bare ZnFe2O4 nanostructures were made through a simple co-precipitation method. In the second step, 3 wt% of various transition metal oxides (CuOx, ZrOx, and Ag2Ox) were embedded on the surface of ZnFe2O4 photocatalysts via a wet impregnation method. Further, the prepared photocatalysts were systematically characterized using XRD, FTIR, FE-SEM, BET, HRTEM, and XPS analysis. The optimum Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts revealed higher degradation efficiencies for acetamiprid under sunlight irradiation. Additionally, the Ag2Ox (3 wt%)-loaded ZnFe2O4 photocatalysts showed more effective antioxidant and antibacterial activity than blank and bare ZnFe2O4 nanomaterials. The enriched catalytic efficiency can be accredited to the 3 wt% of Ag2Ox NPs loaded on ZnFe2O4 nanomaterials, possibly due to the boosted transport properties of the electron-hole pairs. This study will provide a new avenue for the development of simple and effective photocatalysts for efficiently saving polluted aquatic ecosystems.