Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 17(1): 27, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075664

RESUMO

The original article [1] contained an error whereby the captions to Fig. 3 and Fig. 8 were mistakenly interchanged.

2.
J Neuroeng Rehabil ; 16(1): 138, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722740

RESUMO

BACKGROUND: Vibrotactile stimulation is a promising venue in the field of prosthetics to retrain sensory feedback deficits following amputation. Discrimination is well established at the forearm level but not at the upper arm level. Moreover, the effects of combining vibration characteristics such as duration and intensity has never been investigated. METHOD: We conducted experiments on spatial discrimination (experiment 1) and tactile intensity perception (experiment 2), using 9 combinations of 3 intensities and 3 durations of vibror stimulations device. Those combinations were tested under 4 arrangements with an array of 6 vibrors. In both experiments, linear orientation aligned with the upper arm longitudinal axis were compared to circular orientation on the upper arm circumference. For both orientations, vibrors were placed either with 3cm space between the center of 2 vibrors or proportionally to the length or the circumference of the subject upper arm. Eleven heathy subjects underwent the 2 experiments and 7 amputees (humeral level) participated in the spatial discrimination task with the best arrangement found. RESULTS: Experiment 1 revealed that circular arrangements elicited better scores than the linear ones. Arrangements with vibrors spaced proportionally elicited better scores (up to 75% correct) than those with 3 cm spacing. Experiment 2, showed that the perceived intensity of the vibration increases with the intensity of the vibrors' activation, but also with their duration of activation. The 7 patients obtained high scores (up to 91.67% correct) with the circular proportional (CP) arrangement. DISCUSSION: These results highlight that discrete and short vibrations can be well discriminated by healthy subjects and people with an upper limb amputation. These new characteristics of vibrations have great potential for future sensory substitution application in closed-loop prosthetic control.


Assuntos
Amputados , Braço/fisiologia , Percepção do Tato/fisiologia , Vibração , Adulto , Idoso , Antropometria , Membros Artificiais , Discriminação Psicológica , Retroalimentação Sensorial , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Percepção Espacial/fisiologia , Extremidade Superior , Adulto Jovem
3.
Front Neurorobot ; 13: 65, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474846

RESUMO

To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human "pilot" with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.

4.
Front Neurorobot ; 11: 55, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118699

RESUMO

Elaborating an efficient and usable mapping between input commands and output movements is still a key challenge for the design of robotic arm prostheses. In order to address this issue, we present and compare three different control modes, by assessing them in terms of performance as well as general usability. Using an isometric force transducer as the command device, these modes convert the force input signal into either a position or a velocity vector, whose magnitude is linearly or quadratically related to force input magnitude. With the robotic arm from the open source 3D-printed Poppy Humanoid platform simulating a mobile prosthesis, an experiment was carried out with eighteen able-bodied subjects performing a 3-D target-reaching task using each of the three modes. The subjects were given questionnaires to evaluate the quality of their experience with each mode, providing an assessment of their global usability in the context of the task. According to performance metrics and questionnaire results, velocity control modes were found to perform better than position control mode in terms of accuracy and quality of control as well as user satisfaction and comfort. Subjects also seemed to favor quadratic velocity control over linear (proportional) velocity control, even if these two modes did not clearly distinguish from one another when it comes to performance and usability assessment. These results highlight the need to take into account user experience as one of the key criteria for the design of control modes intended to operate limb prostheses.

5.
Exp Brain Res ; 232(4): 1219-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24477762

RESUMO

The extrinsic digit muscles naturally couple wrist action and grip force in prehensile tasks. We explored the effects of wrist position on the steady-state grip force and grip-force change during imposed changes in the grip aperture [apparent stiffness (AS)]. Subjects held an instrumented handle steady using a prismatic five-digit grip. The grip aperture was changed slowly, while the subjects were instructed not to react voluntarily to these changes. An increase in the aperture resulted in an increase in grip force, and its contraction resulted in a proportional drop in grip force. The AS values (between 4 and 6 N/cm) were consistent across a wide range of wrist positions. These values were larger when the subjects performed the task with eyes open as compared to eyes-closed trials. They were also larger for trials that started from a larger initial aperture. After a sequence of aperture increase and decrease to the initial width, grip force dropped by about 25% without the subjects being aware of this. We interpret the findings within the referent configuration hypothesis of grip-force production. The results support the idea of back-coupling between the referent and actual digit coordinates. According to this idea, the central nervous system defines referent coordinates for the digit tips, and the difference between the referent and actual coordinates leads to force production. If actual coordinates are not allowed to move to referent ones, referent coordinates show a relatively slow drift toward the actual ones.


Assuntos
Fenômenos Biomecânicos/fisiologia , Força da Mão/fisiologia , Desempenho Psicomotor/fisiologia , Amplitude de Movimento Articular/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
6.
Exp Brain Res ; 232(3): 775-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24309747

RESUMO

This study was motivated by the double action of extrinsic hand muscles that produce grip force and also contribute to wrist torque. We explored interactions between grip force and wrist torque in isometric force production tasks. In particular, we tested a hypothesis that an intentional change in one of the two kinetic variables would produce an unintentional change in the other (enslaving). When young healthy subjects produced accurate changes in the grip force, only minor effects on the force produced by the hand (by wrist flexion/extension action) were observed. In contrast, a change in the hand force produced consistent changes in grip force in the same direction. The magnitude of such unintentional grip force change was stronger for intentional hand force decrease as compared to hand force increase. These effects increased with the magnitude of the initial grip force. When the subjects were asked to produce accurate total force computed as the sum of the hand and grip forces, strong negative covariation between the two forces was seen across trials interpreted as a synergy stabilizing the total force. An index of this synergy was higher in the space of "modes," hypothetical signals to the two effectors that could be changed by the controller one at a time. We interpret the complex enslaving effects (positive force covariation) as conditioned by typical everyday tasks. The presence of synergic effects (negative, task-specific force covariation) can be naturally interpreted within the referent configuration hypothesis.


Assuntos
Força da Mão/fisiologia , Mãos/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Retroalimentação Fisiológica , Humanos , Masculino , Modelos Biológicos , Modelos Estatísticos
7.
Exp Brain Res ; 227(4): 509-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23625077

RESUMO

Extrinsic digit muscles contribute to both fingertip forces and wrist movements (FDP and FPL-flexion, EDC-extension). Hence, it is expected that finger forces depend on the wrist movement and position. We investigated the relation between grip force and wrist kinematics to examine whether and how the force (1) scales with wrist flexion-extension (FE) angle and (2) can be predicted from accelerations induced during FE movement. In one experiment, subjects naturally held an instrumented handle using a prismatic grasp and performed very slow FE movements. In another experiment, the same movement was performed cyclically at three prescribed frequencies. In quasistatic conditions, the grip force remained constant over the majority of the wrist range of motion. During the cyclic movements, the grip force changed. The changes were described with a linear regression model that represents the thumb and virtual finger (VF = four fingers combined) normal forces as the sum of the effects of the object's tangential and radial accelerations and an object-weight-dependent constant term. The model explained 99 % of the variability in the data. The independence of the grip force from wrist position agrees with the theory that the thumb and VF forces are controlled with two neural variables that encode referent coordinates for each digit while accounting for changes in the position dependence of muscle forces, rather than a single neural variable like referent aperture. The results of the cyclical movement study extend the principle of superposition (some complex actions can be decomposed into independently controlled elemental actions) for a motor task involving simultaneous grip-force exertion and wrist motion with significant length changes of the grip-force-producing muscles.


Assuntos
Dedos/fisiologia , Força da Mão/fisiologia , Força Muscular/fisiologia , Amplitude de Movimento Articular/fisiologia , Punho/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos
8.
Clin Biomech (Bristol, Avon) ; 28(2): 157-63, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23219762

RESUMO

BACKGROUND: Carpal tunnel syndrome is a disorder caused by increased pressure in the carpal tunnel associated with repetitive, stereotypical finger actions. Little is known about in vivo geometrical changes in the carpal tunnel caused by motion at the finger joints and exerting a fingertip force. METHODS: The hands and forearms of five subjects were scanned using a 3.0 T magnetic resonance imaging scanner. The metacarpophalangeal joint of the index finger was placed in: flexion, neutral and extension. For each joint posture subjects either produced no active force (passive condition) or exerted a flexion force to resist a load (~4.0 N) at the fingertip (active condition). Changes in the radii of curvature, position and transverse plane area of the flexor digitorum profundus tendons at the carpal tunnel level were measured. RESULTS: The radius of curvature of the flexor digitorum profundus tendons, at the carpal tunnel level, was significantly affected by posture of the index finger metacarpophalangeal joint (P<0.05) and the radii was significantly different between fingers (P<0.05). Actively producing force caused a significant shift (P<0.05) in the flexor digitorum profundus tendons in the ventral (palmar) direction. No significant change in the area of an ellipse containing the flexor digitorum profundus tendons was observed between conditions. INTERPRETATION: The results show that relatively small changes in the posture and force production of a single finger can lead to significant changes in the geometry of all the flexor digitorum profundus tendons in the carpal tunnel. Additionally, voluntary force production at the fingertip increases the moment arm of the FDP tendons about the wrist joint.


Assuntos
Articulações dos Dedos/fisiologia , Dedos/fisiologia , Articulação Metacarpofalângica/fisiologia , Movimento/fisiologia , Tendões/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
9.
J Biomech ; 45(7): 1246-51, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-22356843

RESUMO

BACKGROUND: Biomechanical models are a useful tool to estimate tendon tensions. Unfortunately, in previous fingers' models, each finger acts independently from the others. This is contradictory with hand motor control theories which show that fingers are functionally linked in order to balance the wrist/forearm joint with minimal tendon tensions. (i.e. principle of minimization of the secondary moments). We propose to adapt a hand biomechanical model according to this principle by including the wrist joint. We will determine whether the finger tendon tensions changed with the wrist joint added to the model. METHODS: Two models have been tested: one considering fingers independently (model A) and one with the fingers mechanically linked by the inclusion of the wrist balance (model B). A single set of data, additional results from the literature and in-vivo values have been used to compare the results. RESULTS: Model A corroborates previous results in the literature. Contrast results were obtained with model B, especially for the Ring and Little fingers. Different tendon tensions were obtained, particularly, in finger extensor muscles critical to balance the wrist. DISCUSSION: We discuss the biomechanical results in accordance with the hand/finger motor control theories. It appears that the wrist joint balance is critical for finger tendon tension estimation. When including the wrist joint into finger models, the tendon tension estimations agree well with the minimization of secondary moments and the force deficit.


Assuntos
Dedos/fisiologia , Mãos/fisiologia , Modelos Biológicos , Fenômenos Biomecânicos , Simulação por Computador , Dedos/anatomia & histologia , Mãos/anatomia & histologia , Humanos , Modelos Anatômicos , Destreza Motora/fisiologia , Tendões/fisiologia , Articulação do Punho/anatomia & histologia , Articulação do Punho/fisiologia
10.
Hum Mov Sci ; 31(4): 749-57, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22119423

RESUMO

There is general consensus that the minimization of the secondary torque of the hand provides a universal model for explaining the force sharing patterns among the fingers. Since biomechanical secondary axes of the hand are unchanged in extension, it appears relevant to validate this model for finger extension forces. Fifteen subjects performed flexion and extension forces in a four-finger task. Each fingertip force was expressed in percentage of the force produced by an individual finger force over the resultant four-finger force (force sharing), and the point of force application of the resultant force was calculated (neutral line). The force-sharing pattern was different for flexion and extension. The index and ring fingers were equally involved, regardless of the task. The neutral line was located differently in flexion and extension, and for proximal and distal force application in extension. The mode of control of the finger redundancy was specific to the force production in flexion and extension. In flexion, the principle of minimization of secondary torque was confirmed. This was not observed in extension. We concluded that the minimization of the secondary torque is not a universal mode of control of the finger redundancy.


Assuntos
Fenômenos Biomecânicos/fisiologia , Dedos/fisiologia , Contração Isométrica/fisiologia , Torque , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
11.
Hum Mov Sci ; 27(3): 396-407, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18400321

RESUMO

During the application of fingertip forces with simultaneous flexion of the four fingers, namely index, middle, ring, and little fingers, a stable force sharing among fingers is adopted. Several studies have hypothesized that this stable force sharing is established to minimize unnecessary rotational moments (different from the main flexion moments). This principle labeled "minimization of secondary moments" is presented in the literature as a principle used by the central nervous system to solve musculoskeletal redundancy. However, this principle has only been tested with one solicited degree of freedom and in one finger posture. Our study tests this principle with various degrees of freedom solicited as secondary moments and in two different finger postures. Participants (n=6) were asked to apply a downward vertical force using their four fingers with the forearm placed in two different configurations: a "horizontal" condition (involving flexion/extension and pronation/supination at the wrist joint) and a "vertical" condition (involving flexion/extension and radial/ulnar deviation at the wrist joint). Additionally, two finger postures were tested in each forearm configuration: in the first, the distal inter-phalangeal joints (DIP) were extended and the proximal inter-phalangeal joints (PIP) highly flexed. In the second finger posture, both DIP and PIP joints were flexed. The resultant four-finger force and the relative involvement of each finger in the resultant four-finger force (force sharing) were analyzed. Results showed that the finger postures did not influence the finger force sharing, showing that the minimization of the secondary moment principle was stable among the finger joint angle configurations. Nonetheless, the relative involvement of each finger was dependent on the secondary degree of freedom solicited (pronation/supination vs. radial/ulnar). The modifications of the finger force sharing between the "horizontal" and "vertical" conditions were in accordance with the principle of minimization of the secondary moments.


Assuntos
Fenômenos Biomecânicos , Dedos/fisiologia , Atividade Motora/fisiologia , Movimento/fisiologia , Adulto , Tamanho Corporal , Articulações dos Dedos/fisiologia , Humanos , Postura , Estresse Mecânico
12.
Clin Biomech (Bristol, Avon) ; 23(5): 562-70, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18267349

RESUMO

BACKGROUND: Finger pulley injury is a common incident observed during sport-climbing. The total rupture of one or several pulleys is highly debilitating and requires surgical reconstruction and/or rehabilitation programs. Literature reports show that fingers are not equally exposed to this injury. The ring and middle fingers are usually injured while the index and little fingers are less exposed. The objective of this study was to determine the biomechanical factors leading to the enhanced exposure of ring and middle finger pulleys. METHOD: Eight subjects were required to exert maximal four-finger force in a specific sport-climbing finger posture. External fingertip forces and finger joint postures were used as input data of a specifically developed biomechanical model of the four fingers (i.e., index, middle, ring and little). This model was based on classical Newton static laws and used an optimization process to quantify the flexor tendon tensions and the pulley forces in each finger. Passive participation of ligaments was also considered into mechanical equations. FINDINGS: Results showed that two main factors could explain the enhanced exposure of ring and middle fingers. Firstly, the fingertip force intensities applied by these two fingers were higher than those observed for the index and little fingers. Secondly, results show that the pulley forces of the ring and middle fingers were close to their rupture thresholds, while it was not the case for the two other fingers. This could be explained by a specific localisation of the finger pulleys of the ring and middle fingers leading to enhanced pulley forces. INTERPRETATION: These results are relevant and could help clinicians to understand finger pulley pathologies and adapt the surgical interventions to reconstruct the fingers pulleys.


Assuntos
Fenômenos Biomecânicos/métodos , Traumatismos dos Dedos/fisiopatologia , Dedos/fisiopatologia , Força da Mão , Modelos Biológicos , Montanhismo/lesões , Traumatismos dos Tendões/fisiopatologia , Adulto , Simulação por Computador , Humanos , Masculino , Ruptura/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA