Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Acta Biomater ; 179: 164-179, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513725

RESUMO

Failure-resistant designs are particularly crucial for bones subjected to rapid loading, as is the case for the ambush-hunting northern pike (Esox lucius). These fish have slim and low-density osteocyte-lacking bones. As part of the swallowing mechanism, the cleithrum bone opens and closes the jaw. The cleithrum needs sufficient strength and damage tolerance, to withstand years of repetitive rapid gape-and-suck cycles of feeding. The thin wing-shaped bone comprises anisotropic layers of mineralized collagen fibers that exhibit periodic variations in mineral density on the mm and micrometer length scales. Wavy collagen fibrils interconnect these layers yielding a highly anisotropic structure. Hydrated cleithra exhibit Young's moduli spanning 3-9 GPa where the yield stress of ∼40 MPa increases markedly to exceed ∼180 MPa upon drying. This 5x observation of increased strength corresponds to a change to brittle fracture patterns. It matches the emergence of compressive residual strains of ∼0.15% within the mineral crystals due to forces from shrinking collagen layers. Compressive stresses on the nanoscale, combined with the layered anisotropic microstructure on the mm length scale, jointly confer structural stability in the slender and lightweight bones. By employing a range of X-ray, electron and optical imaging and mechanical characterization techniques, we reveal the structure and properties that make the cleithra impressively damage resistant composites. STATEMENT OF SIGNIFICANCE: By combining structural and mechanical characterization techniques spanning the mm to the sub-nanometer length scales, this work provides insights into the structural organization and properties of a resilient bone found in pike fish. Our observations show how the anosteocytic bone within the pectoral gridle of these fish, lacking any biological (remodeling) repair mechanisms, is adapted to sustain natural repeated loading cycles of abrupt jaw-gaping and swallowing. We find residual strains within the mineral apatite nanocrystals that contribute to forming a remarkably resilient composite material. Such information gleaned from bony structures that are different from the usual bones of mammals showcases how nature incorporates smart features that induce damage tolerance in bone material, an adaptation acquired through natural evolutionary processes.


Assuntos
Esocidae , Animais , Esocidae/fisiologia , Osso e Ossos/fisiologia , Estresse Mecânico , Nanopartículas/química , Força Compressiva , Evolução Biológica , Módulo de Elasticidade , Colágeno/química
2.
Neuron ; 111(20): 3230-3243.e14, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37562405

RESUMO

Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Células Receptoras Sensoriais/fisiologia , Propriocepção/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Canais Iônicos/metabolismo
3.
Appl Phys Lett ; 122(14): 143701, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37151852

RESUMO

Correlative multimodal imaging is a useful approach to investigate complex structural relations in life sciences across multiple scales. For these experiments, sample preparation workflows that are compatible with multiple imaging techniques must be established. In one such implementation, a fluorescently labeled region of interest in a biological soft tissue sample can be imaged with light microscopy before staining the specimen with heavy metals, enabling follow-up higher resolution structural imaging at the targeted location, bringing context where it is required. Alternatively, or in addition to fluorescence imaging, other microscopy methods, such as synchrotron x-ray computed tomography with propagation-based phase contrast or serial blockface scanning electron microscopy, might also be applied. When combining imaging techniques across scales, it is common that a volumetric region of interest (ROI) needs to be carved from the total sample volume before high resolution imaging with a subsequent technique can be performed. In these situations, the overall success of the correlative workflow depends on the precise targeting of the ROI and the trimming of the sample down to a suitable dimension and geometry for downstream imaging. Here, we showcase the utility of a femtosecond laser (fs laser) device to prepare microscopic samples (1) of an optimized geometry for synchrotron x-ray tomography as well as (2) for volume electron microscopy applications and compatible with correlative multimodal imaging workflows that link both imaging modalities.

4.
ArXiv ; 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36911282

RESUMO

Comprehensive, synapse-resolution imaging of the brain will be crucial for understanding neuronal computations and function. In connectomics, this has been the sole purview of volume electron microscopy (EM), which entails an excruciatingly difficult process because it requires cutting tissue into many thin, fragile slices that then need to be imaged, aligned, and reconstructed. Unlike EM, hard X-ray imaging is compatible with thick tissues, eliminating the need for thin sectioning, and delivering fast acquisition, intrinsic alignment, and isotropic resolution. Unfortunately, current state-of-the-art X-ray microscopy provides much lower resolution, to the extent that segmenting membranes is very challenging. We propose an uncertainty-aware 3D reconstruction model that translates X-ray images to EM-like images with enhanced membrane segmentation quality, showing its potential for developing simpler, faster, and more accurate X-ray based connectomics pipelines.

6.
Eur J Nucl Med Mol Imaging ; 49(13): 4338-4357, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35852558

RESUMO

PURPOSE: Modern neuroimaging lacks the tools necessary for whole-brain, anatomically dense neuronal damage screening. An ideal approach would include unbiased histopathologic identification of aging and neurodegenerative disease. METHODS: We report the postmortem application of multiscale X-ray phase-contrast computed tomography (X-PCI-CT) for the label-free and dissection-free organ-level to intracellular-level 3D visualization of distinct single neurons and glia. In deep neuronal populations in the brain of aged wild-type and of 3xTgAD mice (a triply-transgenic model of Alzheimer's disease), we quantified intracellular hyperdensity, a manifestation of aging or neurodegeneration. RESULTS: In 3xTgAD mice, the observed hyperdensity was identified as amyloid-ß and hyper-phosphorylated tau protein deposits with calcium and iron involvement, by correlating the X-PCI-CT data to immunohistochemistry, X-ray fluorescence microscopy, high-field MRI, and TEM. As a proof-of-concept, X-PCI-CT was used to analyze hippocampal and cortical brain regions of 3xTgAD mice treated with LY379268, selective agonist of group II metabotropic glutamate receptors (mGlu2/3 receptors). Chronic pharmacologic activation of mGlu2/3 receptors significantly reduced the hyperdensity particle load in the ventral cortical regions of 3xTgAD mice, suggesting a neuroprotective effect with locoregional efficacy. CONCLUSIONS: This multiscale micro-to-nano 3D imaging method based on X-PCI-CT enabled identification and quantification of cellular and sub-cellular aging and neurodegeneration in deep neuronal and glial cell populations in a transgenic model of Alzheimer's disease. This approach quantified the localized and intracellular neuroprotective effects of pharmacological activation of mGlu2/3 receptors.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Cálcio , Senescência Celular , Ferro , Camundongos Transgênicos , Neuroimagem , Fármacos Neuroprotetores/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas tau/metabolismo , Raios X
7.
Front Cell Dev Biol ; 10: 880696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756997

RESUMO

Integrating physiology with structural insights of the same neuronal circuit provides a unique approach to understanding how the mammalian brain computes information. However, combining the techniques that provide both streams of data represents an experimental challenge. When studying glomerular column circuits in the mouse olfactory bulb, this approach involves e.g., recording the neuronal activity with in vivo 2-photon (2P) calcium imaging, retrieving the circuit structure with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT) and/or serial block-face scanning electron microscopy (SBEM) and correlating these datasets. Sample preparation and dataset correlation are two key bottlenecks in this correlative workflow. Here, we first quantify the occurrence of different artefacts when staining tissue slices with heavy metals to generate X-ray or electron contrast. We report improvements in the staining procedure, ultimately achieving perfect staining in ∼67% of the 0.6 mm thick olfactory bulb slices that were previously imaged in vivo with 2P. Secondly, we characterise the accuracy of the spatial correlation between functional and structural datasets. We demonstrate that direct, single-cell precise correlation between in vivo 2P and SXRT tissue volumes is possible and as reliable as correlating between 2P and SBEM. Altogether, these results pave the way for experiments that require retrieving physiology, circuit structure and synaptic signatures in targeted regions. These correlative function-structure studies will bring a more complete understanding of mammalian olfactory processing across spatial scales and time.

8.
Nat Commun ; 13(1): 2923, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614048

RESUMO

Understanding the function of biological tissues requires a coordinated study of physiology and structure, exploring volumes that contain complete functional units at a detail that resolves the relevant features. Here, we introduce an approach to address this challenge: Mouse brain tissue sections containing a region where function was recorded using in vivo 2-photon calcium imaging were stained, dehydrated, resin-embedded and imaged with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT). SXRT provided context at subcellular detail, and could be followed by targeted acquisition of multiple volumes using serial block-face electron microscopy (SBEM). In the olfactory bulb, combining SXRT and SBEM enabled disambiguation of in vivo-assigned regions of interest. In the hippocampus, we found that superficial pyramidal neurons in CA1a displayed a larger density of spine apparati than deeper ones. Altogether, this approach can enable a functional and structural investigation of subcellular features in the context of cells and tissues.


Assuntos
Imageamento Tridimensional , Síncrotrons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Imagem de Difusão por Ressonância Magnética , Camundongos , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Microtomografia por Raio-X/métodos
9.
Sci Adv ; 8(6): eabd0892, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138906

RESUMO

The outer layer of the pollen grain, the exine, plays a key role in the survival of terrestrial plant life. However, the exine structure in different groups of plants remains enigmatic. Here, modern and fossil coniferous bisaccate pollen were examined to investigate the detailed three-dimensional structure and properties of the pollen wall. X-ray nanotomography and volume electron microscopy are used to provide high-resolution imagery, revealing a solid nanofoam structure. Atomic force microscopy measurements were used to compare the pollen wall with other natural and synthetic foams and to demonstrate that the mechanical properties of the wall in this type of pollen are retained for millions of years in fossil specimens. The microscopic structure of this robust biological material has potential applications in materials sciences and also contributes to our understanding of the evolutionary success of conifers and other plants over geological time.

10.
Sci Rep ; 11(1): 15539, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330938

RESUMO

Bone is an intriguingly complex material. It combines high strength, toughness and lightweight via an elaborate hierarchical structure. This structure results from a biologically driven self-assembly and self-organisation, and leads to different deformation mechanisms along the length scales. Characterising multiscale bone mechanics is fundamental to better understand these mechanisms including changes due to bone-related diseases. It also guides us in the design of new bio-inspired materials. A key-gap in understanding bone's behaviour exists for its fundamental mechanical unit, the mineralised collagen fibre, a composite of organic collagen molecules and inorganic mineral nanocrystals. Here, we report an experimentally informed statistical elasto-plastic model to explain the fibre behaviour including the nanoscale interplay and load transfer with its main mechanical components. We utilise data from synchrotron nanoscale imaging, and combined micropillar compression and synchrotron X-ray scattering to develop the model. We see that a 10-15% micro- and nanomechanical heterogeneity in mechanical properties is essential to promote the ductile microscale behaviour preventing an abrupt overall failure even when individual fibrils have failed. We see that mineral particles take up 45% of strain compared to collagen molecules while interfibrillar shearing seems to enable the ductile post-yield behaviour. Our results suggest that a change in mineralisation and fibril-to-matrix interaction leads to different mechanical properties among mineralised tissues. Our model operates at crystalline-, molecular- and continuum-levels and sheds light on the micro- and nanoscale deformation of fibril-matrix reinforced composites.

11.
J Biomed Sci ; 28(1): 42, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098949

RESUMO

BACKGROUND: The evolution of cartilage degeneration is still not fully understood, partly due to its thinness, low radio-opacity and therefore lack of adequately resolving imaging techniques. X-ray phase-contrast imaging (X-PCI) offers increased sensitivity with respect to standard radiography and CT allowing an enhanced visibility of adjoining, low density structures with an almost histological image resolution. This study examined the feasibility of X-PCI for high-resolution (sub-) micrometer analysis of different stages in tissue degeneration of human cartilage samples and compare it to histology and transmission electron microscopy. METHODS: Ten 10%-formalin preserved healthy and moderately degenerated osteochondral samples, post-mortem extracted from human knee joints, were examined using four different X-PCI tomographic set-ups using synchrotron radiation the European Synchrotron Radiation Facility (France) and the Swiss Light Source (Switzerland). Volumetric datasets were acquired with voxel sizes between 0.7 × 0.7 × 0.7 and 0.1 × 0.1 × 0.1 µm3. Data were reconstructed by a filtered back-projection algorithm, post-processed by ImageJ, the WEKA machine learning pixel classification tool and VGStudio max. For correlation, osteochondral samples were processed for histology and transmission electron microscopy. RESULTS: X-PCI provides a three-dimensional visualization of healthy and moderately degenerated cartilage samples down to a (sub-)cellular level with good correlation to histologic and transmission electron microscopy images. X-PCI is able to resolve the three layers and the architectural organization of cartilage including changes in chondrocyte cell morphology, chondrocyte subgroup distribution and (re-)organization as well as its subtle matrix structures. CONCLUSIONS: X-PCI captures comprehensive cartilage tissue transformation in its environment and might serve as a tissue-preserving, staining-free and volumetric virtual histology tool for examining and chronicling cartilage behavior in basic research/laboratory experiments of cartilage disease evolution.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Microscopia de Contraste de Fase/métodos , Osteoartrite/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/patologia , Feminino , Humanos , Masculino , Osteoartrite/etiologia , Osteoartrite/patologia
12.
J Microsc ; 282(1): 30-44, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33125757

RESUMO

There is a growing interest in developing 3D microscopy for the exploration of thick biological tissues. Recently, 3D X-ray nanocomputerised tomography has proven to be a suitable technique for imaging the bone lacunocanalicular network. This interconnected structure is hosting the osteocytes which play a major role in maintaining bone quality through remodelling processes. 3D images have the potential to reveal the architecture of cellular networks, but their quantitative analysis remains a challenge due to the density and complexity of nanometre sized structures and the need to handle and process large datasets, for example, 20483 voxels corresponding to 32 GB per individual image in our case. In this work, we propose an efficient image processing approach for the segmentation of the network and the extraction of characteristic parameters describing the 3D structure. These parameters include the density of lacunae, the porosity of lacunae and canaliculi, and morphological features of lacunae (volume, surface area, lengths, anisotropy etc.). We also introduce additional parameters describing the local environment of each lacuna and its canaliculi. The method is applied to analyse eight human femoral cortical bone samples imaged by magnified X-ray phase nanotomography with a voxel size of 120 nm, which was found to be a good compromise to resolve canaliculi while keeping a sufficiently large field of view of 246 µm in 3D. The analysis was performed on a total of 2077 lacunae showing an average length, width and depth of 17.1 µm × 9.2 µm × 4.4 µm, with an average number of 58.2 canaliculi per lacuna and a total lacuno-canalicular porosity of 1.12%. The reported descriptive parameters provide information on the 3D organisation of the lacuno-canalicular network in human bones.


Assuntos
Osso e Ossos , Osteócitos , Osso e Ossos/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Raios X
13.
Proc Natl Acad Sci U S A ; 117(52): 33649-33659, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33376224

RESUMO

Axonal conduction velocity, which ensures efficient function of the brain network, is related to axon diameter. Noninvasive, in vivo axon diameter estimates can be made with diffusion magnetic resonance imaging, but the technique requires three-dimensional (3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-holotomography images of white matter samples from the corpus callosum of a monkey brain reveal that blood vessels, cells, and vacuoles affect axonal diameter and trajectory. Within single axons, we find that the variation in diameter and conduction velocity correlates with the mean diameter, contesting the value of precise diameter determination in larger axons. These complex 3D axon morphologies drive previously reported 2D trends in axon diameter and g-ratio. Furthermore, we find that these morphologies bias the estimates of axon diameter with diffusion magnetic resonance imaging and, ultimately, impact the investigation and formulation of the axon structure-function relationship.


Assuntos
Axônios/fisiologia , Animais , Feminino , Haplorrinos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Bainha de Mielina/metabolismo , Relação Estrutura-Atividade , Vacúolos/metabolismo , Substância Branca/anatomia & histologia
14.
Nat Commun ; 11(1): 5121, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046697

RESUMO

Despite considerable advances in knowledge of the anatomy, ecology and evolution of early mammals, far less is known about their physiology. Evidence is contradictory concerning the timing and fossil groups in which mammalian endothermy arose. To determine the state of metabolic evolution in two of the earliest stem-mammals, the Early Jurassic Morganucodon and Kuehneotherium, we use separate proxies for basal and maximum metabolic rate. Here we report, using synchrotron X-ray tomographic imaging of incremental tooth cementum, that they had maximum lifespans considerably longer than comparably sized living mammals, but similar to those of reptiles, and so they likely had reptilian-level basal metabolic rates. Measurements of femoral nutrient foramina show Morganucodon had blood flow rates intermediate between living mammals and reptiles, suggesting maximum metabolic rates increased evolutionarily before basal metabolic rates. Stem mammals lacked the elevated endothermic metabolism of living mammals, highlighting the mosaic nature of mammalian physiological evolution.


Assuntos
Mamíferos/fisiologia , Répteis/fisiologia , Animais , Metabolismo Basal , Evolução Biológica , Fósseis/anatomia & histologia , Fósseis/história , História Antiga , Mamíferos/classificação , Filogenia , Tomografia por Raios X , Dente/anatomia & histologia , Dente/química
15.
Nat Neurosci ; 23(12): 1637-1643, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929244

RESUMO

Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neurônios/ultraestrutura , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Córtex Cerebral/ultraestrutura , Dendritos/fisiologia , Dendritos/ultraestrutura , Drosophila melanogaster , Feminino , Holografia , Imageamento Tridimensional , Aprendizado de Máquina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Músculo Esquelético/inervação , Músculo Esquelético/ultraestrutura , Nanotecnologia , Redes Neurais de Computação , Células Piramidais/ultraestrutura , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Tomografia
16.
Sci Rep ; 10(1): 7592, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371896

RESUMO

A deeper knowledge of the architecture of the peripheral nerve with three-dimensional (3D) imaging of the nerve tissue at the sub-cellular scale may contribute to unravel the pathophysiology of neuropathy. Here we demonstrate the feasibility of X-ray phase contrast holographic nanotomography to enable 3D imaging of nerves at high resolution, while covering a relatively large tissue volume. We show various subcomponents of human peripheral nerves in biopsies from patients with type 1 and 2 diabetes and in a healthy subject. Together with well-organized, parallel myelinated nerve fibres we show regenerative clusters with twisted nerve fibres, a sprouted axon from a node of Ranvier and other specific details. A novel 3D construction (with movie created) of a node of Ranvier with end segment of a degenerated axon and sprout of a regenerated one is captured. Many of these architectural elements are not described in the literature. Thus, X-ray phase contrast holographic nanotomography enables identifying specific morphological structures in 3D in peripheral nerve biopsies from a healthy subject and from patients with type 1 and 2 diabetes.


Assuntos
Neuropatias Diabéticas/diagnóstico por imagem , Neuropatias Diabéticas/patologia , Holografia , Nervos Periféricos/diagnóstico por imagem , Nervos Periféricos/patologia , Idoso , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Feminino , Holografia/métodos , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Microscopia , Pessoa de Meia-Idade , Nanotecnologia , Microtomografia por Raio-X/métodos
17.
Sci Rep ; 10(1): 4567, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32165649

RESUMO

Recently, increasing attention has been given to the study of osteocytes, the cells that are thought to play an important role in bone remodeling and in the mechanisms of bone fragility. The interconnected osteocyte system is deeply embedded inside the mineralized bone matrix and lies within a closely fitted porosity known as the lacuno-canalicular network. However, quantitative data on human samples remain scarce, mostly measured in 2D, and there are gaps to be filled in terms of spatial resolution. In this work, we present data on femoral samples from female donors imaged with isotropic 3D spatial resolution by magnified X-ray phase nano computerized-tomography. We report quantitative results on the 3D structure of canaliculi in human femoral bone imaged with a voxel size of 30 nm. We found that the lacuno-canalicular porosity occupies on average 1.45% of the total tissue volume, the ratio of the canalicular versus lacunar porosity is about 37.7%, and the primary number of canaliculi stemming from each lacuna is 79 on average. The examination of this number at different distances from the surface of the lacunae demonstrates branching in the canaliculi network. We analyzed the impact of spatial resolution on quantification by comparing parameters extracted from the same samples imaged with 120 nm and 30 nm voxel sizes. To avoid any bias related to the analysis region, the volumes at 120 nm and 30 nm were registered and cropped to the same field of view. Our results show that the measurements at 120 and 30 nm are strongly correlated in our data set but that the highest spatial resolution provides more accurate information on the canaliculi network and its branching properties.


Assuntos
Fêmur/ultraestrutura , Imageamento Tridimensional/métodos , Osteócitos/ultraestrutura , Microtomografia por Raio-X/instrumentação , Idoso , Idoso de 80 Anos ou mais , Cadáver , Calcificação Fisiológica , Feminino , Fêmur/citologia , Humanos , Processamento de Imagem Assistida por Computador , Pessoa de Meia-Idade , Nanotecnologia , Porosidade , Análise Espacial , Síncrotrons
18.
Anal Chem ; 92(7): 4814-4819, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32162903

RESUMO

X-ray microscopy is increasingly used in biology, but in most cases only in a qualitative way. We present here a 3D correlative cryo X-ray microscopy approach suited for the quantification of molar concentrations and structure in native samples at nanometer scale. The multimodal approach combines X-ray fluorescence and X-ray holographic nanotomography on "thick" frozen-hydrated cells. The quantitativeness of the X-ray fluorescence reconstruction is improved by estimating the self-attenuation from the 3D holography reconstruction. Applied to complex macrophage cells, we extract the quantification of major and minor elements heavier than phosphorus, as well as the density, in the different organelles. The intracellular landscape shows remarkable elemental differences. This novel analytical microscopy approach will be of particular interest to investigate complex biological and chemical systems in their native environment.


Assuntos
Macrófagos/química , Nanopartículas/análise , Imagem Óptica , Análise de Célula Única , Microscopia Crioeletrônica , Humanos , Macrófagos/citologia , Tamanho da Partícula , Propriedades de Superfície
19.
J Struct Biol ; 209(1): 107432, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816415

RESUMO

High-resolution three-dimensional imaging is key to our understanding of biological tissue formation and function. Recent developments in synchrotron-based X-Ray tomography techniques provide unprecedented morphological information on relatively large sample volumes with a spatial resolution better than 50 nm. However, the analysis of the generated data, in particular image segmentation - separation into structure and background - still presents a significant challenge, especially when considering complex biomineralized structures that exhibit hierarchical arrangement of their constituents across many length scales - from millimeters down to nanometers. In the present work, synchrotron-based holographic nano-tomography data are combined with state-of-the-art machine learning methods to image and analyze the nacreous architecture in the bivalve Unio pictorum in 3D. Using kinetic and thermodynamic considerations known from physics of materials, the obtained spatial information is then used to provide a quantitative description of the structural and topological evolution of nacre during shell formation. Ultimately, this study establishes a workflow for high-resolution three-dimensional analysis of fine highly-mineralized biological tissues while providing a detailed analytical view on nacre morphogenesis.


Assuntos
Exoesqueleto/ultraestrutura , Imageamento Tridimensional , Morfogênese/genética , Exoesqueleto/crescimento & desenvolvimento , Animais , Biomineralização , Aprendizado Profundo , Cinética , Minerais/química , Síncrotrons , Termodinâmica , Tomografia por Raios X , Raios X
20.
ACS Nano ; 13(12): 13932-13939, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31829557

RESUMO

To investigate the performance of three-dimensional (3D) nanostructures, it is vital to study their internal structure with a methodology that keeps the device fully functional and ready for further integration. To this aim, we introduce here traceless X-ray tomography (TXT) that combines synchrotron X-ray holographic tomography with high X-ray photon energies (17 keV) in order to study nanostructures "as is" on massive silicon substrates. The combined strengths of TXT are a large total sample size to field-of-view ratio and a large penetration depth. We study exemplary 3D photonic band gap crystals made by CMOS-compatible means and obtain real space 3D density distributions with 55 nm spatial resolution. TXT identifies why nanostructures that look similar in electron microscopy have vastly different nanophotonic functionality: one "good" crystal with a broad photonic gap reveals 3D periodicity as designed; a second "bad" structure without a gap reveals a buried void, and a third "ugly" one without gap is shallow due to fabrication errors. Thus, TXT serves to nondestructively differentiate between the possible reasons of not finding the designed and expected performance and is therefore a powerful tool to critically assess 3D functional nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA